Skip to main content
Log in

6G-AUTOR: Autonomic Transceiver via Realtime On-Device Signal Analytics

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

Next-generation wireless systems aim at fulfilling diverse application requirements but fundamentally rely on point-to-point transmission qualities. Aligning with recent AI-enabled wireless implementations, this paper introduces autonomic radios, 6G-AUTOR, that leverage novel algorithm-hardware separation platforms, softwarization of transmission (TX) and reception (RX) operations, and automatic reconfiguration of RF frontends, to support link performance and resilience. Hence, a software architecture can be provided to enable event-triggered operations for seamless hosting and execution environment. That is, those functions can be executed on an on-demand basis so that no resources will be preoccupied until the point of execution for better device efficiency. As a comprehensive transceiver solution, our design encompasses several ML-driven models, each enhancing a specific aspect of either TX or RX, leading to robust transceiver operation under tight constraints of future wireless systems. As for Tx scenarios, a data-driven spectrum sensing algorithm was implemented to obtain usages of current frequency bands for further use. Also, a data-driven radio management module was developed via deep Q-networks to support fast-reconfiguration of TX resource blocks (RB) and proactive multi-agent access. As for Rx scenarios, a fundamental tool - automatic modulation classification (AMC) which involves a complex correntropy extraction, followed by a convolutional neural network (CNN)-based classification, and a deep learning-based LDPC decoder were added to improve the reception quality and radio performance. Simulations of individual algorithms demonstrate that under appropriate training, each of the corresponding radio functions have either outperformed or have performed on-par with the benchmark solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Notes

  1. Data availability statement: The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Akyildiz, I. F., Kak, A., & Nie, S. (2020). 6G and beyond: the future of wireless communications systems. IEEE Access, 8, 133995–134030. https://doi.org/10.1109/ACCESS.2020.3010896

    Article  Google Scholar 

  2. Chowdhury, M. Z., Shahjalal, M., Ahmed, S., & Jang, Y. M. (2020). 6G wireless communication systems: Applications, requirements, technologies, challenges, and research directions. IEEE Open Journal of the Communications Society, 1, 957–975.

    Article  Google Scholar 

  3. Saad, W., Bennis, M., & Chen, M. (2019). A vision of 6g wireless systems: Applications, trends, technologies, and open research problems. IEEE network, 34(3), 134–142.

    Article  Google Scholar 

  4. O-RAN working group 1 use cases analysis report. (2023[Online], April 01). https://www.o-ran.org/

  5. Lin, Y.-C., Lee, T.-S., & Ding, Z. (2022). Exploiting partial FDD reciprocity for beam based pilot precoding and CSI feedback in deep learning. Preprint retrieved from https://arxiv.org/abs/2205.14558 

  6. Lin, Y.-C., Liu, Z., Lee, T.-S., & Ding, Z. (2021). Deep learning phase compression for mimo CSI feedback by exploiting FDD channel reciprocity. IEEE Wireless Communications Letters, 10(10), 2200–2204.

    Article  Google Scholar 

  7. Lin, C.-H., Kao, W.-C., Zhan, S.-Q., & Lee, T.-S. (2019). BSNET: A deep learning-based beam selection method for MMWave communications. In 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall) (pp. 1–6). IEEE.

  8. Lin, C.-H., Wu, C.-C., Chen, K.-F., & Lee, T.-S. (2020). A variational autoencoder-based secure transceiver design using deep learning. In GLOBECOM 2020-2020 IEEE Global Communications Conference (pp. 1–7). IEEE.

  9. Kaur, A., & Kumar, K. (2020). Imperfect CSI based intelligent dynamic spectrum management using cooperative reinforcement learning framework in cognitive radio networks. IEEE Transactions on Mobile Computing.

  10. Zhao, T., Li, F., & Tian, P. (2020). A deep-learning method for device activity detection in mmtc under imperfect CSI based on variational-autoencoder. IEEE Transactions on Vehicular Technology, 69(7), 7981–7986.

    Article  Google Scholar 

  11. Letaief, K. B., Chen, W., Shi, Y., Zhang, J., & Zhang, Y.-J.A. (2019). The roadmap to 6G: AI empowered wireless networks. IEEE Communications Magazine, 57(8), 84–90. https://doi.org/10.1109/MCOM.2019.1900271

    Article  Google Scholar 

  12. Lynn, T., Rosati, P., Lejeune, A., & Emeakaroha, V. (2017). A preliminary review of enterprise serverless cloud computing (function-as-a-service) platforms. In 2017 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (pp. 162–169). IEEE.

  13. Hendrickson, S., Sturdevant, S., Harter, T., Venkataramani, V., Arpaci-Dusseau, A. C., & Arpaci-Dusseau, R. H. (2016). Serverless computation with {OpenLambda}. In 8th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 16).

  14. Fox, G. C., Ishakian, V., Muthusamy, V., & Slominski, A. (2017). Status of serverless computing and function-as-a-service (FAAS) in industry and research. Preprint retrieved from http://arxiv.org/abs/1708.08028

  15. Shahrad, M., Balkind, J., & Wentzlaff, D. (2019). Architectural implications of function-as-a-service computing. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture (pp. 1063–1075).

  16. Giordani, M., Polese, M., Mezzavilla, M., Rangan, S., & Zorzi, M. (2020). Toward 6G networks: Use cases and technologies. IEEE Communications Magazine, 58(3), 55–61. https://doi.org/10.1109/MCOM.001.1900411

    Article  Google Scholar 

  17. Iannacci, J. (2021). Towards future 6G from the hardware components perspective – a focus on the hardware-software divide, its limiting factors and the envisioned benefits in going beyond it. In 2021 IEEE 4th 5G World Forum (5GWF) (pp. 1–6). https://doi.org/10.1109/5GWF52925.2021.00008

  18. Strinati, E. C., Belot, D., Falempin, A., & Doré, J.-B. (2021). Toward 6G: From new hardware design to wireless semantic and goal-oriented communication paradigms. https://doi.org/10.48550/ARXIV.2107.01019. https://arxiv.org/abs/2107.01019

  19. Aman, M. N., & Sikdar, B. (2021). Ai based algorithm-hardware separation for IoV security. In IEEE Globecom Workshops (GC Wkshps), 2021, (pp. 1–6). https://doi.org/10.1109/GCWkshps52748.2021.9681992

  20. Liang, Y.-C. (2020). Dynamic spectrum management: From cognitive radio to blockchain and artificial intelligence.https://doi.org/10.1007/978-981-15-0776-2

    Article  Google Scholar 

  21. Veedu, S. N. K., Mozaffari, M., Hoglund, A., Yavuz, E. A., Tirronen, T., Bergman, J., & Wang, Y. P. E. (2022). Toward smaller and lower-cost 5G devices with longer battery life: An overview of 3GPP release 17 redcap. https://doi.org/10.48550/ARXIV.2203.05634. https://arxiv.org/abs/2203.05634

  22. Kott, A., Swami, A., & West, B. J. (2016). The internet of battle things. Computer, 49(12), 70–75. https://doi.org/10.1109/MC.2016.355

    Article  Google Scholar 

  23. Pradhan, M., & Noll, J. (2020). Security, privacy, and dependability evaluation in verification and validation life cycles for military iot systems. IEEE Communications Magazine, 58(8), 14–20. https://doi.org/10.1109/MCOM.001.2000342

    Article  Google Scholar 

  24. Request for solutions(RFS)-task area 3-dynamic spectrum management@b5g tactical edge. (2022[Online], March 17). https://sam.gov/opp/c9640c1d916b43ca995878bdb1464a5a/view

  25. DOD tests AI-powered spectrum management technology on aerial combat training ranges. (2021[Online], October 28). https://www.airforcemag.com/dod-test-ai-powered-spectrum-management/

  26. 3GPP TR 38.886 v16.2.0, Release 16. (2020, October). 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; V2X Services based on NR; UE radio transmission and reception.

  27. Lin, C.-H., Lin, S.-C., Wang, C.-Y., & Chase, T. (2021). A c-v2x platform using transportation data and spectrum-aware sidelink access. In 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC). https://doi.org/10.1109/SMC52423.2021.9659109

  28. Lin, S.-C., Chen, K.-C., & Karimoddini, A. (2021). SDVEC: Software-defined vehicular edge computing with ultra-low latency. IEEE Communications Magazine, 59(12), 66–72. https://doi.org/10.1109/MCOM.004.2001124

    Article  Google Scholar 

  29. Ryu, M., Chow, Y., Anderson, R., Tjandraatmadja, C., & Boutilier, C. (2020). CAQL: Continuous action Q-learning. https://doi.org/10.48550/ARXIV.1909.12397. http://arxiv.org/abs/1909.12397

  30. Foerster, J. et al. (2017). Stabilising experience replay for deep multi-agent reinforcement learning. In PMLR International Conference on Machine Learning (pp. 1146–1155). https://doi.org/10.48550/ARXIV.1702.08887

  31. Lin, C.-H., Lin, S.-C., & Blasch, E. (2021). Tulvcan: Terahertz ultra-broadband learning vehicular channel-aware networking. In IEEE Conference on Computer Communications Workshops (INFOCOM), 2021 (pp. 1–6). https://doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484613

  32. Meng, X., Inaltekin, H., & Krongold, B. (2020). End-to-end deep learning-based compressive spectrum sensing in cognitive radio networks. In ICC 2020-2020 IEEE International Conference on Communications (ICC) (pp. 1–6). IEEE. https://doi.org/10.1109/ICC40277.2020.9149195

  33. Conv1d layer (2022 [Online], March 01). https://keras.io/api/layers/convolution_layers/convolution1d/

  34. Dai, J., Tan, K., Si, Z., Niu, K., Chen, M., Poor, H. V., & Cui, S. (2021). Learning to decode protograph LDPC codes. IEEE Journal on Selected Areas in Communications, 39(7), 1983–1999. https://doi.org/10.1109/JSAC.2021.3078488

    Article  Google Scholar 

  35. Nadal, J., & Baghdadi, A. (2021). Parallel and flexible 5G LDPC decoder architecture targeting FPGA. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 29(6):1141–1151. https://doi.org/10.1109/TVLSI.2021.3072866

  36. Ni, Y., Peng, S., Zhou, L., & Yang, X. (2020). Blind identification of LDPC code based on deep learning. In 2019 6th International Conference on Dependable Systems and Their Applications (DSA) (pp. 460–464). https://doi.org/10.1109/DSA.2019.00073

  37. Wang, Q., Wang, S., Fang, H., Chen, L., Chen, L., & Guo, Y. (2020). A model-driven deep learning method for normalized min-sum LDPC decoding. In IEEE International Conference on Communications Workshops (ICC Workshops), 2020 (pp. 1–6). https://doi.org/10.1109/ICCWorkshops49005.2020.9145237

  38. 3GPP. (2021). Technical specification group radio access network NR; multiplexing and channel coding (release 16).1

Download references

Funding

This work was supported by Lockheed Martin Space Systems Company, Lockheed Martin Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shih-Chun Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, CH., Rohit, K.V.S., Lin, SC. et al. 6G-AUTOR: Autonomic Transceiver via Realtime On-Device Signal Analytics. J Sign Process Syst 95, 1277–1295 (2023). https://doi.org/10.1007/s11265-023-01858-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-023-01858-8

Keywords

Navigation