Skip to main content
Log in

A Power Efficient Heterogeneous Embedded Vision System

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

A heterogeneous Image acquisition and processing system is presented based on commercially available components. Due to the addition of a field programmable array which is configured by the central processing unit, the system is very flexible in terms of which image sensor is used and what type and level of image processing is accomplished in hardware. The ease of use of the system is improved by a library of intellectual property cores that enable the gate array to be interfaced to other processing cores. Pipelining of the pixel data stream allows insertion of several image processing operations as frames are captured. The system is compact and can easily be integrated into the camera housing without having to introduce forced cooling of the camera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gamal, A. E., & Eltoukhy, H. (May 2005). CMOS image sensors. Ieee Circuits And Devices Magazine, 21(3), 6–20. https://doi.org/10.1109/MCD.2005.1438751.

  2. Fossum, E. R. (1997). ‘CMOS image sensors: electronic camera-on-a-chip’, IEEE Trans. Electron Devices, vol. 44, no. 10, pp. 1689–1698, Oct. doi: https://doi.org/10.1109/16.628824.

  3. Ohta, J., Ohta, J., & Smart, C. M. O. S. (2017). Image sensors and applications. Boca Raton: CRC Press. https://doi.org/10.1201/9781420019155.

    Book  Google Scholar 

  4. Yadid-Pecht, O., Etienne-Cummings, R., & Imagers, C. M. O. S. (2004). From Phototransduction to Image Processing’. Springer Science & Business Media.

  5. Intel, V., & Suite’, I. P. (2022). Intel. https://www.intel.com/content/www/us/en/docs/programmable/683416/22-1/about-the-video-and-image-processing-suite.html (accessed Nov. 23.

  6. Garcia-Nathan, T. B., et al. (Oct. 2017). Compact and portable X-ray imager system using Medipix3RX. Journal Of Instrumentation, 12(10), C10011–C10011. https://doi.org/10.1088/1748-0221/12/10/C10011.

  7. Chen, Y., & ‘DUAL CAMERA SYSTEM FOR SYNCHRONOUS IMAGING IN (2021). VISIBLE AND NON-VISIBLE SPECTRAL REGIONS’, [Thesis]. Manchester, UK: The University of Manchester; Aug. 12, 2021. https://www.escholar.manchester.ac.uk/uk-ac-man-scw:329649 (accessed Nov. 29, 2022).

  8. Scott, P. F. I., Kachatkou, A. S., Frost, A. L., & van Silfhout, R. G. (Oct. 2009). A high dynamic range camera with a non-destructive readout complementary metal–oxide–semiconductor sensor. Measurement Science & Technology, 20(10), 104004. https://doi.org/10.1088/0957-0233/20/10/104004.

  9. Scott, P. F. I., Kachatkou, A. S., Kyele, N. R. C., & van Silfhout, R. G. (Jul. 2009). ‘Real-time photon beam localization methods using high-resolution imagers and parallel processing using a reconfigurable system’, Optical Engineering, 48, 7, 073601, doi: https://doi.org/10.1117/1.3158957.

  10. Kyele, N. R., Decanniere, K., & van Silfhout, R. G. (2005). ‘A transparent two-dimensional in situ beam-position and profile monitor for synchrotron X-ray beamlines’, J. Synchrotron Radiat., vol. 12, no. 6, pp. 800–806, Oct. doi: https://doi.org/10.1107/S0909049505031250.

  11. van Silfhout, R. (Jul. 2020). X-ray beam imaging sensors. Imaging Sens Technol Appl, 1–31. https://doi.org/10.1049/PBCE116E_ch1.

  12. ‘BeagleBoard.org - bone’ (2022). https://beagleboard.org/bone (accessed Nov 29.

  13. ‘Openembedded.org’. https://www.openembedded.org/wiki/Main_Page(accessed Nov 29.

  14. ‘SoC Interconnection (2022). : WISHBONE:: OpenCores’. https://opencores.org/howto/wishbone (accessed Nov 29.

  15. Jiang, A., ‘HETEROGENEOUS SYSTEM DESIGN AND OPTIMISATION FOR EMBEDDED VISION, & SYSTEMS’ (2020). [Thesis]. Manchester, UK: The University of Manchester; May 21, 2020. https://www.escholar.manchester.ac.uk/uk-ac-man-scw:324841 (accessed Nov. 29, 2022).

  16. Intel, A. I., & Specifications’, I. (2022). https://www.intel.com/content/www/us/en/docs/programmable/683091/22-3/introduction-to-the-interface-specifications.html (accessed Nov. 26.

  17. MIPI (accessed Nov. 28, 2022). ‘Camera Serial Interface 2 (MIPI CSI-2) | MIPI’. https://www.mipi.org/specifications/csi-2.

  18. Kyele, N., Van Silfhout, R., & SENSING’, B. E. A. M., WO/2010/004258, Jan. 14, 2010 Accessed: Aug. 01, 2011. [Online]. Available: http://www.wipo.int/patentscope/search/en/WO2010004258.

  19. Ballabriga, R., Campbell, M., Heijne, E. H. M., Llopart, X., & Tlustos, L. (2007). ‘The Medipix3 Prototype, a Pixel Readout Chip Working in Single Photon Counting Mode With Improved Spectrometric Performance’, IEEE Trans. Nucl. Sci., vol. 54, no. 5, pp. 1824–1829, Oct. doi: https://doi.org/10.1109/TNS.2007.906163.

  20. Chagani, H., et al. (2017). Performance of the Lancelot Beam position monitor at the Diamond Light source. Journal Of Instrumentation, 12(12, p. C12044,), https://doi.org/10.1088/1748-0221/12/12/C12044.

  21. ‘NVIDIA Embedded Systems for Next-Gen Autonomous Machines’ (2022). NVIDIA. https://www.nvidia.com/en-gb/autonomous-machines/embedded-systems/(accessed Nov 30.

Download references

Acknowledgements

The reported embedded vision system is a joint team effort with key contributions from Drs Kevin Moon, Anton Kachatkou, Chao Jiang, Bart Garcia-Nathan. The group has received financial support from the North West development Agency, the Engineering and Physical Sciences Research Council, FMB Oxford Ltd. and Diamond Light Source Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roelof van Silfhout.

Ethics declarations

The author declares no competing financial or non-financial interests.

Supporting Data.

Detailed information on our platform is available through Github link: https://github.com/roelof4/ARMflash.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Silfhout, R. A Power Efficient Heterogeneous Embedded Vision System. J Sign Process Syst 95, 1141–1151 (2023). https://doi.org/10.1007/s11265-023-01882-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-023-01882-8

Keywords

Navigation