Impact Of Interference On Multi-hop Wireless Network Penfiance

Kamal Jain Jitendra Padhye Venkata N. Padmanabhan Lili Qiu

Microsoft Research
One Microsoft Way, Redmond, WA 98052.

{kamalj, padhye, padmanab, lii@microsoft.com

Abstract interesting commercial applications have emerged, such
as “community wireless networks” [2, 28], and sensor
In this paper, we address the following question: givematworks [8].

specific placement of wireless nodes in physical space fundamental issue in multi-hop wireless networks is
and a specific traffic workload, what is the maximugat performance degrades sharply as the number of hops
throughput that can be supported by the resulting nghyersed increases. For example, in a network of nodes
work? Unlike previous work that has focused on compith identical and omnidirectional radio ranges, going
ing asymptotic performance bounds under assumptigisn a single hop to 2 hops halves the throughput of a

of homogeneity or randomness in the network topologyy because wireless interference dictates that only one
and/or workload, we work with any given network angf the 2 hops can be active at a time.

Workload.spemfled as.lnputs. o i The performance challenges of multi-hop networks
A key issue impacting performance is wireless N§5ve long been recognized and have led to a lot of re-

ference betwe_en nelghbormg nodes. We model SUChégérch on the medium access control (MAC), routing,
terference using aonflict graph and present mEtho_d%nd transport layers of the networking stack. In recent
for computing uppe_r and lower bounds on the Optmk?éars, there has also been a focus on the fundamental
throughput for the given network and workload. To Corr81'uestion of what the optimal throughput of a multi-hop

pute these bounds, we assume that packet transmiss‘mpaess network is. The seminal paper by Gupta and

at the individual nodes can be finely controlled and Calimar [14] showed that in a network comprising 1of
fully scheduled by an omniscient and omnipotent cent

_f&éntical nodes, each of which is communicating with

entle, which is unrealistic. Neverthele_ss, using ns'z's'%other node, the throughput per nod®is————) as-
ulations, we show that the routes derived from our anal- \/nlogn

ysis often yield noticeably better throughput than the d&Ming randlom node placement and communication pat-
——) assuming optimal node placement and

fault shortest path routes even in the presence of uncd8f? @ndo(-7)
dinated packet transmissions and MAC contention. TRRMMunication pattern. Subsequent work [10, 11, 20]

suggests that there is opportunity for achieving throud?ﬂs considered alternative models and settings, such as
put gains by employing an interference-aware routiH@e presence of relay nodes and mobile nodes, and local-

protocol. ity in inter-node communication, and their results are less
pessimistic.

This paper also deals with the problem of computing

1 Introduction the optimal throughput of a wireless network. However,

a key distinction of our approach is that we work with
Multi-hop wireless networks have been a subject of muahy given wireless network configuration and workload
study over the past few decades [1]. Much of the origireecified as inputs. In other words, the node locations,
work was motivated by military applications such as bagtnges etc. as well as the traffic matrix indicating which
tlefield communications. More recently, however, sorseurce nodes are communicating with which sink nodes



are specified as the input. We make no assumptions abmges grows. But this result is under the assumption that
the homogeneity of nodes with regard to radio rangermdes always have data to send and are ready to trans-
other characteristics, or regularity in communication pauit as fast as their wireless connection will allow. In a
tern. This is in contrast to previous work that has focuseshlistic setting, however, sources tend to be bursty, so
on asymptotic bounds under assumptions such as nodées will on average transmit at a slower rate than the
homogeneity and random communication patterns. speed of their wireless link. In such a setting, we find
We use aonflict graphto model the effects of wirelesghat the addition of new nodes can actually improve the
interference. The conflict graph indicates which grouper-node throughput because the richer connectivity pro-
of links mutually interfere and hence cannot be activades increased opportunities for routing around interfer
simultaneously. We formulate a multi-commodity flownce “hotspots” in the network. This more than offsets
problem [4], augmented with constraints derived frothe increase in traffic load caused by the new nodes.
the conflict graph, to compute the optimal throughput thatThe rest of this paper is organized as follows. In Sec-
the wireless network can support between the sources o 2, we discuss related work. In Section 3, we present
the sinks. We show that the problem of finding optiméektails of our conflict graph model and methods for com-
throughput is NP-hard, and present methods for compuiting bounds on the optimal network throughput. In
ing upper and lower bounds on the optimal throughputSection 4, we present results obtained from applying our
We show how our methodology can accommodateradel to different network and workload configurations.
diversity of wireless network characteristics such as tlmeSection 5, we discuss ways to incorporate node mobil-
availability of multiple non-overlapping channels, multity into our model. In Section 6 we discuss some limita-
ple radios per node, and directional antennas. We disos of our work. Section 7 concludes the paper.
show how multiple MAC protocol models as well as
single-path and multi-path routing constraints can be ag-
SRS %" Related work

V\]fﬁ view tr]efgeneralitli/ of oulr( methodptl)ogy an? thﬁ number of papers have been published on the problem
conflict graph framework as a key contribution of oy estimating the throughput of a multi-hop wireless net-

work. _ work. Here, we consider the work that is most closely
To compute bounds on the optimal throughput, we 38Tated to ours

sume that packet transmissions at the individual node§h their seminal paper [14], Gupta and Kumar studied
can _be_fmely 30””0'_'90' and careflully _SCh?/c\j/Lr’ll_Td Ey b throughput of wireless networks under two models of
omniscient an c?m_nlpotent ce_ntra. er_1t|ty. e this J3rerference: grotocol model that assumes interference
clearly an unrealistic assumption, it gives us a best Ca5Be an all-or-nothing phenomenon anghysicalmodel
bouf‘d agalnst which to compare practical algorithms _ft?lrat considers the impact of interfering transmissions on
routing, medium access control, and packet scheduligg, signal-to-noise ratio. They show that in a network
Moreover, ns-2 simulations show that the routes deriv@&nprising ofn identical nodes. each of which is com-

from our analysis often yield noticeably better throuQPﬁunicating with another node, the throughput per node
put than the default shortest path routes, even in the pEe L) assuming random node placement and

ence of real-world effects such as uncoordinated packet "+/nlogn
transmissions and MAC contention. In some cases, @%) assuming optimal node placement and communi-
throughput gain is over a factor of 2. The reason for thigtion pattern. These results are shown under the proto-
improvement is that in optimizing throughput, we tenebl model, but the latter result also holds in the case of the
to find routes that are less prone to wireless interferenpBysical model under reasonable assumptions. Accord-
For instance, a longer route along the periphery of ting to the intuitive explanation in [20], while the overall
network may be picked instead of a shorter but more @re-hop throughput of the network grows @sn), the
terference prone route through the middle of the netwo#ikverage path length grows @x,/n), so the throughput
We use our technique to evaluate how the per-ndgei&y node i@(ﬁ).
throughput in a multi-hop wireless network varies as theLi et al. [20] have extended the work of Gupta and
number of nodes grows. Previous work (e.g., [14]) sugumar [14] by considering the impact of different traffic
gests that the per-node throughput falls as the numbepatterns on the scalability of per node throughput. They
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point out that a random traffic pattern represents the watations of the hop count metric, but for a somewhat
case from the viewpoint of per-node throughput. Thelfferent reason — because wireless interference limits
also show that for traffic patterns with power law distantieroughput, a circuitous but less interference-pronesout
distributions, the per-node throughput stays roughly caay along the periphery of a network, may perform better
stant as the network size grows, provided the distarthan the shortest hop count route.

distribution decays more rapidly than the square of theln [23], Nandagopal et. al. use a construct similar to
distance. Liet al. also consider the interactions of packebnflict graphs, called flow contention graph to capture
forwarding with the 802.11 MAC and show that the ugsterference in wireless networks. However, as the name
of 802.11 instead of a global scheduling scheme doesinmplies, the construct is defined on flows rather than on
affect the asymptotic bound on per-node throughput dieks. Moreover, the aim of that paper is to study MAC
rived in [14]. fairness issues, rather than to derive optimal throughput

In [11], Grossglauser and Tse introduce mobility infPunds-

the model presented in [14], and show that the averagd@nd and Vaidya [29] also use the notion of a *conflict
long-term throughput per source-destination pair can §@Pn” in the context of their work on priority scheduling
kept constant even as the number of nodes per unit dfeireless ad hoc networks. However, like [23], their

increases, provided that we allow for delays on the or@@nflict graph is also defined on flows rather than links.
of the time-scale of mobility. This is achieved by exploit. € graph is used only to interpret experimental results
wing that the 802.11 MAC causes flows with a high

ing mobility to keep data transfers local, and transmitti%‘; _ _ _
only when the transmitter and receiver are close to e&&gree of conflict to suffer disproportionately compared

other, at a distance aﬂ?(%), thereby reducing total re-to flows with a low degree of conflict. There is no attempt

source usage and interference. While this is encouragitr? ,nalyze the conflict graph to derive throughput bounds.

in many practical situations such as community wireless n [19], Kodialam and Nandagopal consider the prob-

networks, mobility may be too infrequent or even no >m of computing optimal throughput for a given wireless
existent to be exploitable network with a given traffic pattern. They assume a lim-

_ ited model of interference in which the only constraint is
Gastpar and Vetterli [10] extend the work of GUPi& 4t node may not transmit and receive simultaneously.

and Kumar [14] in a different direction. Instead of th@ it this constraint, they model the problem as a graph
simple point-to-point coding assumption made in [14}4|6ring problem. They provide a polynomial time algo-
which treats each tra_nsmltter—recel_ver pair as belng iNd8m that computes routes and schedules such that the
pendent of other pairs, they considenatwork coding yegyting throughput is guaranteed to be at least 67% of
model where nodes could cooperate in arbitrary Wayse optimal throughput. The model we consider in this
for instance, to boost the transmit power. Further, thg¥ser is much more general and flexible. Our model can
assume that there is a single source and single desygRa into account interference from neighboring nodes,
tion picked at random, and that the rest of the nodes @¢hact of directional antennas, availability of multiple
as relays. They show that the throughput of the netwofn interfering channels etc. This generality makes the
under these conditions 3(log 1), compared t@(1) for - 5-5p1em harder, so our algorithm only provides upper and
the point-to-point coding model of [14]. While the Usg,yer bounds on optimal throughpu.

of network coding in this conte_xt is a p_romisin_g line of \we also note that our approach can compute the op-
research, we note that the point-to-point coding mogl,5| throughput if we assume the limited model of in-
corresponds to current radio technology such as 802.1d.terence assumed in [19]. See Appendix B for more

The recent work of De Coutet al. [5], based on details.

two experiments in a 802.11b-based multi-hop wirelesdn summary, there is a large body of work on the multi-
testbed shows that minimizing the hop count of an erftbp wireless throughput problem, much of it focused on
to-end path is not sufficient for achieving good perfoasymptotic bounds under assumptions such as node ho-
mance. The reason they point out is that link quality camogeneity and random communication patterns. In con-
vary widely and long hops may be included in “shorttast, our work focuses on computing throughput bounds
paths, resulting in a high packet error rate. In our wofflor a given wireless network and traffic workload, using a
we also reach the same conclusion regarding the lioenflict graph to model the constraints imposed by wire-
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less interference. We do not consider how factors sucfs transmission as received af. The transmission is
as mobility [11] or coding [10]. And like [14], we dosuccessful ifSNR;; > SN Ripresh, WhereSNR;; de-
notcompute the information theoretic capacity of the netetes the signal-to-noise ratio at the nagdor transmis-
work. sions received from node;. The total noise)N;, atn;
consists of the ambient noisd],, plus the interference
. . due to other ongoing transmissions in the network. Note
3 Computlng Bounds on Optlmal again that thereg is ngo requirement that the noise level at
Throughput the sender also be low.

Our goal is to model wireless interference using a gen-
We now present our framework for incorporating the cogral framework that would enable us to compute the op-
straints imposed by interference in a multi-hop wireleggal throughput the wireless network can support for
network and then present methods for computing bourdgjiven traffic workload. We assume that the work-
on the optimal throughput that a given network can supad consists of greedy sources and destinations, i.e. the
port for a given traffic workload. We begin with someources always have data to send and the destination

background and terminology. nodes are always ready to accept data. The communi-
cation between the sources and destinations can be ei-
3.1 Background and Terminology ther direct or be routed via intermediate nodes. We as-

sume that packet transmissions at the individual nodes
Consider a wireless network withi nodes arbitrarily lo- can pe finely controlled and scheduled by an omniscient
cated on a plane. Let;,1 < ¢ < N denote the nodes,gng omnipotent central entity.
andd;; denote the distance between nodesandn;. e say that a network throughpiitis feasible if there
Each nodey;, is equipped with a radio with communicagyists a schedule of transmissions such that no two in-
tion rangefz; and a potentially larger interference rang@rfering links are active simultaneously, and the total
;. For ease of explanation, we start by considering tgoughput for the given source-destination pair®isn
case of a single wireless channel. (We will generaligg, nroplem formulation here, we focus on maximizing
the model in Section 3.5.) We consider two models, thg total throughput between source-destination pairs.
Protocol Modeland thePhysical Model, to define the | he rest of this section, we consider the following
conditions for a successful yvireless tra.nsmission. Theske scenarios in detail: (i) multipath routing under the
models are similar to those introduced in [14]. protocol interference model, (i) multipath routing un-
Protocol Model: In the protocol model, if there is a sinyer the physical interference model, and (jii) single-path
gle wireless channel, a transmission is successful if b%'&ting under both models. We end the section by dis-
of the following conditions are satisfied: cussing several other generalizations, and summarizing

1. dy; < R, our framework.

2. Any nodeny,, such thaidy; < Ry, is not transmit- 3.2 Multipath Routing Under the Protocol In-
ting terference Model

Note that the second requirement implies that a node niziyen a wireless network withv nodes, we first derive a
not send and receive at the same time nor transmitcemnectivity grapiC' as follows. The vertices of’ cor-
more than one other node at the same time. Note alsgpond to the wireless node¥ ) and the edges cor-
that this model differs from the popular 802.11 MAG@espond to the wireless linkd.{) between the nodes.
in an important way — it requires only the receiver tdhere is a directed link; from noden; ton; if d;; < R;

be free of interference, instead of requiring that both thedi # j. We use the terms “node” and “link” in refer-
sender and the receiver be free of interference. We dinee to the connectivity graph while reserving the terms
cuss how to adapt the model for an 802.11-style MAC‘imertex” and “edge” for theconflict graphpresented in
Section 3.5. Section 3.2.1.

Physical Model: Suppose node; wants to transmit to  Let us first consider communication between a single
noden;. We can calculate the signal streng#fy;;, of sourcen,, and a single destination,. In the absence of
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wireless interference (e.g., on a wired network), findisige of the largest independent setdin Then, we have
the maximum achievable throughput between the soutive following hardness result.

and the destination, given the flexibility of using multiple

paths, can be formulated as a linear program correspoh@eorem 1 Given a network and a set of source and des-
ing to a max-flow problem, as shown in Figure 1. Hertination nodes, it is NP-hard to find the optimal through-
fi; denotes the amount of flow on lirll, Cap;; denote PUt under the protocpl interferenc_e model. Moreover, it
the capacity of linki;;, and L¢ is a set of all links in the IS NP-hard to approximate the optimal throughput.
connectivity graph.

The maximization states that we wish to maximize tfoof : It can be shown that the problem of finding
sum of flow out of the source. The first constraint refe independence number of a graph, which is a known
resents flow conservation, i.e., at every node, except figéd problem even to approximate, can be reduced to the
source and the destination, the amount of incoming fl@Rtimal throughput problem. Moreover, this reduction
is equal to the amount of outgoing flow. The second cdf-approximation preserving. Hence the above hardness
straint states that the incoming flow to the source nodégsult. We describe the reduction in Appendix A. O
0. The third constraint states that the outgoing flow fromsijnce it is NP-hard to approximate the optimal

the amount of flow on a link cannot exceed the capacid upper bounds on the optimal throughput. For this, we
of the link. The final constraint restricts the amount gked to define some more terms. An independent stt
flow on each link to be non-negative. a graphH can be characterized using amiependence
Note that the above formulation does not take wirelegsctor which is a vector of sizéVy|. This vector is de-
interference into account. We turn to this issue next. noted byx;. The j' element of this vector is set to 1
if and only if the vertexv; is a member of the indepen-
dent set/, otherwise it is zero. We can think &f; as a
point in a|Vx|-dimensional space. The polytope defined

To incorporate wireless interference into our problefy convex combination of independence vectors is called
formulation, we define @onflict graph F, whose ver- theindependent set polytopme thestable set polytope

tices correspond to the links in the connectivity graph,
C. There is an edge between the vertitesndl,, in ¥ 3.2.3 Lower Bound

if the links /;; andl,, may not be active simultaneously. - . ,
) ._°The problem of deriving a lower bound is equivalent to
Based on the protocol interference model described,,in .

: . the problem of finding a network throughpix that has
Section 3.1, we draw such an edge if any of the follow- . . )
o , p . a feasible schedule to achieve it. We make the follow-
ing is true:d;; < R; ordy; < R,,. This encompasses the

. : ing observation. Links belonging to a given independent
case where a conflict arises because ligkandi,, have . : .
. o ) } set in conflict graphF" can be scheduled simultaneously.
a node in common (i.ei,== pori == qgorj == p

or j —— q). Note, however, that we do not draw an ed Seuppose there are a total &f maximal independent sets
J == Ny . ' : %5 graphF’. A maximal independent set is one that cannot
from a vertex to itself in the conflict graph.

) : be grown further. Lefy, I, . . . Ix denote these maximal
Before we discuss how to use the conflict graph to aﬂgiependent sets, and, 0 < \; < 1 denote the fraction

interference constraints in the linear program in Figureo]r’time allocated to the independent gefi.e., the time

3.2.1 Conflict Graph

we need to state a hardness result and a few definitioQﬁ]ring which the links inf; can be active). If we add
the schedule restrictions imposed by the independent sets
322 Hardness Result to the original linear program (Figure 1), the resulting

throughput always has a feasible schedule, and therefore
We present a hardness result for computing the optimahstitutes a lower bound on the maximum achievable
throughput under the protocol interference model. Gividmoughput.
a graphH with vertex setl’;;, anindependent se$ a set  We formalize our above observation as follows. Given
of vertices such that there is no edge between any twaafonflict graphF', we define ausage vectqrU, of size
the vertices. Thendependence numbef graphH is the |Vr|, whereU; denotes the fraction of time that the link
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lsieLC

Subject To:

Y fi = > fii mi€Ne\{nsna} <1>

li;€Lc lji€Lc

S fis = 0 <2>
lis€Lc

> fui =0 <3>
lgi€Lc
fij < Capij Vi,j | lij € Le <4>
fz'j > 0 V’i,j”ijELC <5 >

Figure 1: LP formulation to optimize the throughput for agéensource-destination pair.

i can be active. A usage vectorsshedulablef the cor- equals to one. Thus:

responding links can be scheduled, conflict free, for the

fraction of the time indicated in the usage vector. If we U= Z AIX].
think of the usage vector as a point ifilg-|-dimensional I is an independent set

space, we have the following theorem. _
Now we show that a usage vector that is a convex com-

_ _ bination of independence vectors is always schedulable.
Theorem 2 A usage vector is schedulable if and only §onsider a usage vectéf that is obtained by a convex
it lies within the independent set polytope of the confliggmbination of independence vectors:

graph.
U= Z )\]X[
I is an independent set

Proof: Let us first show that a schedulable usage vec- ) ] )
tor lies in the independent set polytope of the conflitifollows thatU is schedulable since each independent

graph. In other words, we want to show that the usagd! €an be scheduled for; fraction of the time. [

vector is a convex combination of independence vectorsTheorem 2 implies that the optimal network through-

Consider a schedulable usage vedtorConsider one put problem is a linear program, no matter how many
unit of time, and assume that we have scheduled the liskader-receiver pairs we have. In fact, the problem is
over fractions of this unit time, such that the usage vecthat of maximizing a linear objective function over a fea-
has been satisfied. Since the vector is schedulable, sible polytope. This feasible polytope can be described
a schedule must exist. This schedule will tell us whies the intersection of two polytopes — the flow polytope
links are active at any given instance of time. Also, sinead the independent set polytope of the conflict graph.
the usage vector is schedulable, at any instance in e flow polytopeis the collection of feasible points de-
schedule, the links that are active are not in conflict wisieribed by the flow constraints (Figure 1), ignoring wire-
each other. That is, the vertices corresponding to thésss conflicts. The flow polytope is a simple structure on
links must form an independent set in the conflict graphhich a linear objective function can easily be optimized.
Find each such independent $eind denote its independindependent set polytope, on the other hand, is a difficult
dence vector bx;. Define)\; as the fraction of the unitstructure and no simple characterization of it is known
time independent sdt is active. Since the total time idbecause there may be exponentially many independent
one unit, the sum of\;’s over all the independent setsets.
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Theorem 2 implies that any convex combination of
dependence vectors is schedulable. In general, how
an arbitrary point inside the independent set polytope
be a convex combination of an exponentially many
dependence vectors. To get around this computati
problem, we only want to pick “easy” points in the i N
dependent set polytope. An obvious notion of “easy Figure 2: A pentagon and its complement
that the point picked should be a convex combination graph. The former is an odd hole, and the latter
small number of (i.e., polynomially many) independel is an odd anti-hole.
vectors. We will be using this notion explicitly in the
algorithm as follows. We derive a lower bound on the
optimal throughput by findind<’ independence vectors
in the conflict graphF, and adding the following con-
straints to the LP formulation shown in Figure 1.

3 4 3

° Z£1 A; < 1 (because only one maximal indepen-
dent set can be active at a time)
Figure 3: An example that shows it is not suf-

o fij < 21, er, AiCapi; (because the fraction of timeficient even if we add all clique, hole, anti-hole
for which a link may be active is constrained by theynstraints.

sum of the activity periods of the independent sets it

is a member of). _ : .
N can then maximize the throughput over the intersection

Note the solution produced by solving this linear pr& this polytope with flow polytope. This will give us an
gram is always feasible (i.e., schedulable). This is ddiPer bound on the throughput. _ _
to the fact that all links belonging to independent Eet Unfort_unately, it is com_putatlonally expensive to find
can be simultaneously active faf fraction of time, and all the cliques, and even if we could find them all, there
we have required that tHE’, \; < 1. Moreover, The- is still no guarantee that our upper bound will be tight.
orem 2 assures us that when we include all independEftS ¢an be illustrated by the following example. Sup-
sets, the solution will be exact, i.e., this will be the maxpoSe the conflict graph is the pentagon depicted in Fig-
mum value ofD that is feasible. To help tighten the lowe}{"® 2. AS We can see, the only cliques in the graph are
bound more quickly, we should consider using maxiniQfmed by the adjacent pairs of nodes. Adding the clique
independence sets. While findial maximal indepen- constraints alone to the LP would suggest that a sum of
dent sets is also NP-hard [9], the lower bound obtainik utiIiz_ation equal to 2_.5 is achi_evable. _But actually at
by considering a subset of the maximal independent d8@St 2 links can be active at a time. This suggests that
has the nice property that as we add more constraints, fen€€d to add constraints correspondingda holes
bound becomes tighter, eventually converging to the @5idodd anti-holes An odd hole is a cycle formed by an
timal (.., the maximum feasible) throughput when v§ld number of edges, without a chord in between. For

add all the constraints. example, the pentagon in Figure 2 is an odd hole. The
sum of the link utilizations in an odd hole containig
3.2.4 Upper Bound vertices can be no more th@éj. An odd anti-hole is the

complementary graph of an odd hole. Figure 2 shows an
In this section, we derive an upper bound on the netwarkample of an anti-hole with 5 nodes. The sum of link
throughput. Consider the conflict graph.chAquein the utilizations in an odd anti-hole can be no more than 2.
conflict graph is a set of vertices that mutually conflict Unfortunately, even if we consider the constraints im-
with each other. Theorem 2 implies that the total usagesed by the odd holes and odd anti-holes (in addition
of the links in a clique is at most 1. This gives us a cote those imposed by the cliques), we are not guaranteed
straint on the usage vector. We can find many cliques daadcave a feasible solution. For example, consider the
write corresponding constraints to define a polytope. \&nflict graph, as shown in Figure 3. We can assign a uti-
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lization of 0.4 to all the vertices on the pentagon and @aph are directed, and in genemﬂq may not be equal

to the center of the pentagon, while satisfying all cliqug w;{]_

hole, and anti-hole constraints. But there is no feasible

schedule to achieve this, because this solution does#8t1 | ower Bound

lie in the stable-set polytope. In fact, the upper bound

based only on clique constraints is tight only for a spkl the protocol model, we derive a lower bound on the
cial class of conflict graphs called perfect grapter- network throughput by finding independent sets in the
fect graphsare the graphs without any odd holes or Od‘d)nﬂict graphF, and addlng the constraints associated
anti-holes. Thus, in our present formulation, the upp&ith the independent sets to the LP for the wired network.

bounds may not always be tight. We discuss this furtfiialogous to independent sets, we introduce the notion
in Appendix C. of schedulable sets the physical model. A schedulable

setH, is defined as a set of vertices such that for every
3.3 Multipath Routing Under the Physical In- VereXly € He, 35 en, wi; < 1. It follows that all
terference Model links in a schedulable set can be active simultaneously.
Suppose we schedule the links belonging#tpfor time
As before, we begin by creating a connectivity grapf),0 < )\, < 1. We now take the original LP for the
C, whose vertices correspond to the nodes in the ngired network (in Figure 1), and include the following
work. Based on the physical interference model, theygnstraints:
exists a link,l;;, fromn; ton; if and only if SS;; /N, > o .
SN Rypresh (i-€., the SNR exceeds the threshold at least® 2r=1= < 1, whereK” is the number of schedula-
in the presence of just the ambient noise). ble sets found
US|_ng the co_nn_ectlvny graph, we can write ar_l LP for- o fi <50 e AaCapyj
mulation to optimize network throughput for a wired net- 7
work. As discussed before, the solution to the linear pro-To tighten the bound, we should consider using max-
gram, as shown in Figure 1, provides an upper bounthl schedulable setm graphF (i.e., a schedulable set
on network throughput. However, this bound is not vesyich that adding additional vertices to the set will violate
useful since it does not take interference effects into #ee schedulable property). We have the following theo-
count. rem, which is similar to the Theorem 2 in the protocol
To take interference effects into account, we construgbdel.
a conflict graphF'. Unlike in the protocol model, con-
flicts in the physical model are not binary. Rather, the ihheorem 3 A usage vector is schedulable if and only if it
terference gradually increases as more neighboring ndifssin the schedulable set polytope of the conflict graph.
transmit, and becomes intolerable when the noise level
reaches a threshold. This gradual increase in interferepggof :  The proof is similar to that of Theorem 2.0
suggests that we should have a weighted conflict graph,
where the weight of a directed edge from verti¢gsto
verticesl;; (denoted byw??) indicates what fraction of3-3-2  Upper Bound

the maximum permissible noise at nodg (for link ;; 14 derive an upper bound, we consider maximal sets of
to sfull be operational) is cqntrlbuted by activity on linKertices inF such that for any pair of verticds, andl;;,
Ipq (1.€., noden,,'s transmission to node,). Specifically, w?! > 1. These correspond to the cliques in the protocol

we have 99 . interference model. Therefore for each such set, we add
wil = TMN a constraint that the sum of their utilization has to be no
SNRipresh @ more than 1.

whereSS,; andSS;; denote the signal strength at node These constraints may result in a loose bound since
n; of transmissions from nodesandi, respectively, and there may not be very many cliques. To tighten the upper
%—Na is the maximum permissible interferencbound, we further augment the linear program with the
noise at node:; that would still allow successful recepfollowing additional constraints. After we find a max-

tion of noden;’s transmissions. The edges of the confliohal schedulable set, say vertices v», ..., v¢, adding

8



any additional vertex, denoted ag to the set will make

the set unschedulable. Therefore we have the following

constraint:Uy + Uy + ..Uy + U, < t, where as before

U, denotes the fraction of time for which physical lihk

(corresponding to vertey; in the conflict graph) is ac-
tive. By adding as many such constraints as possible, we

can tighten the upper bound. Still, the bound is not guar-

anteed to converge to the optimal even if we include all

such sets.

3.4 Single-path Routing

So far we have considered multipath routing. As many
existing routing algorithms [17, 27, 26, 25] are confined
to single-path routing, it is useful to derive a through-

put bound for single-path routing so that we can compares

how much the current protocols deviate from the theo-

retical achievable throughput under the same routing re-

striction. The way we enforce the single-path restriction
for the flow from a source to a destination is by adding
the following additional constraints to the LP problem for

the wired network (shown in Figure 1):

e For each linkl;;, fi; < Capy; - zi;, wherez; ; €

{0, 1}

e Ateach nodey;, > z; <1

Herez;; is a 0-1 variable that indicates whether or not e

link 7;; is used for transmissions, arfg; is the amount

of flow on the link. The basic intuition for these con-

straints is that in a single-path routing, at any node in the
network, there is at most one out-going edge that has a

non-zero flow. Since;; can have only one of two val-

ues, either 0 or 1, the two conditions ensure that at node

n; at most oney;; will have a value of 1.

In theory, solving integer linear program is a NP-

hard [9], but in practice, software such assplve [3]
and CPLEX [6] can solve mixed-integer programs.

3.5 Other Generalization

The basic conflict graph model is quite flexible, and can

be generalized in many ways.

e Multiple source-destination pairs: We can ex-

tend our formulations in the previous sections from
a single source-destination pair to multiple source-e
destination pairs using a multi-commodity flow for-
mulation [4] augmented with constraints derived

9

from the conflict graph. We assign a connection
identifier to each source-destination pair. Instead of
the flow variablesf;;, we introduce the variablg ;.

to denote the amount of flow for connecti@non

link 7;;. Referring to Figure 1, the flow conservation
constraints at each node apply on a per-connection
basis (constraink1>); the total incoming flow into

a source node is zero only for the connection(s) orig-
inating at that node (constrairt2>); likewise, the
total outgoing flow from a sink node is zero only
for the connection(s) terminating at that node (con-
straint<3>); and the capacity constraints apply to
the sum of the flows over all connections traversing
a link (constraint<4>).

Multiple wireless channels: It may be the case that
instead of just one channel, each node can tune to
one of M channels) > 1. This can be easily mod-
eled by introducing\f links between nodesandj,
instead of just 1. In general, links corresponding to
different channels do not conflict with each other,
reflecting the fact that the channels do not mutually
interfere. However, the links emanating from the
same node do conflict, reflecting the constraint that
the single radio at each node can transmit only on
one channel at a time.

Multiple radios per node: Each wireless node may

be equipped with more than one radio. If each node
has M radios, this can be modeled by introducing
M links between each pairs of nodes. If we assume
that each of these radios is tuned to a separate chan-
nel, and that a node can communicate on multiple
radios simultaneously, then the conflict graph will
show no conflict among th&/ links between a pair

of nodes.

Directional antennas: We can combine the use of
directional antennas with the basic protocol model
of communication. Instead of specifying a range
for each node, we simply specify a list of nodes (or
points in space) where transmissions or interference
from this node can be perceived. The connectivity
graph and the conflict graph are modified to take this
into account.

Multirate radios: Many wireless technologies sup-
port multirate radios, which can switch between a
set of discrete data rates depending on the quality of



the RF channel. For instance, 802.11b supports 4
rates: 1, 2, 5.5, and 11 Mbps. We can model this in
our framework by creating multiple “virtual” links
corresponding to a physical link in the connectiv-
ity graph, one for each rate. The conflict graph is
augmented to reflect the fact that only one of the
virtual links corresponding to a physical link can be
active at a time. The weights assigned to the edges
of the conflict graph (under the physical interference
model) would reflect the specific noise tolerance of ®
the virtual link corresponding to each rate.

Multiple transmit power levels: We have thus far
assumed that transmitters used a fixed power level.
However, we can extend our framework to incor-
porate a discrete set of transmitter power levels. We
create multiple “virtual” links corresponding to each
physical link in the connectivity graph, one for each
power level. Depending on the environment and the

nodes generate data or are willing to accept data is
bounded. We do so by creatingvatual source or
sink node and connecting it to the real source or sink
via avirtual link of speed equal to the source or sink
rate. The virtual link is special in that it is assumed
not to interfere with any other link in the network.
The virtual link is just a convenient construct to help
us model the bound on the source or sink rate.

Other objective functions: Our framework is not
limited to maximizing the total network through-
put. We can accommodate any objective that can
be expressed as a linear function. For example, we
can assign a linear revenue function to each source-
destination pair, and then maximize the revenue in-
stead of maximizing the total network throughput.
We can also maximize the minimum throughput
across all source-destination pairs, to provide a de-
gree of fairness.

proximity between the transmitter and the receiver,

the different power levels may also correspond kdany of these generalizations can be combined with each
different modulation schemes and/or different datgéher to model complex networking scenarios. We will
rates. Using the physical model, we create edgeee examples of such combinations in Section 4.

in the conflict graph whose weights are a function

of the power level of the links in the connectivit3 6  Summary

graph. This would, for instance, allow modeling

of the case where a transmitter communicating with this section, we presented the concept of a conflict
a nearby receiver switches to a lower power, whi#aph, and discussed how it could be used to derive upper
perhaps still maintaining a high data rate, given tR&d lower bounds on the optimal throughput that a wire-

proximity of the nodes, to minimize interference ol¢ss network can support, for a given set of sources and
other nodes. destinations. We show that the conflict graph model can

be generalized to handle a wide range of scenarios. We
Other models of interference: In the simple ex- have shown that the lower bound derived from our frame-
ample, we considered an optimistic model of intefork is always schedulable, and will be optimal once all
ference that did not require the sender to be frgfe independent set constraints are incorporated. If the
of interference. But a more realistic model, whicfipper and lower bounds are equal, then these correspond
more closely reflects the situation #2.11, would to the optimal solution. We have not dealt with the ques-

require both the sender and the receiver to be fregijgh of node mobility so far, but we will present some
interference. This reflect the fact th#2.11 may jdeas in Section 5.

perform virtual carrier sensing using an RTS-CTS
exchange, and that for successful communication,
the sender must be able to hear the link layer £&- Results

knowledgment transmitted by the receiver. There- _
fore, we draw an edge in the conflict graph pdhis section presents several results based on our model.

The section is organized as follows. In Section 4.1, we
present illustrative results that demonstrate the flagbil

of our model. In Section 4.2, we use our model to provide
Non-greedy sources or destinations\We can eas- insights into the tradeoff between the richer connectivity
ily accommodate the case where the rate at whigtovided by the increase in the size of a wireless mesh

tween verticed;; andl,, if ds < R}, for ab =
iq, i, ip, pt, 3P, PJ, 74, OV 4]
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network and the increase in cumulative traffic | (2\ . e
to the new mesh participants. In Section 4.3,
trate how optimal routing can bring benefits eve
sence of optimal scheduling (i.e., in the presence
contention and other inefficiencies). In Section H 4 13
1)
m

14 22
3 5 12 15 2 23

discuss the issue of convergence of the upper .

bounds to the optimal throughput. Finally, in Sec 10 19
we present a discussion of the computational cc o |2 g |11 18| |20
model.

1 9

0 3

4.1 lllustrative Results L 7 17 e
In this section, we present several illustrative r Figure 4. 3x3 Grid
demonstrate the capabilities of our model. We
defining a metric for computational effort. In Section 3, Bidirectional MAC

we have described the procedure for finding upper and *
lower bounds on throughput. Let us consider the proto-

col model of interference, and focus on the lower bound. %8|
We have shown that as we include more distinct indepeB-
dent sets, the lower bound becomes progressively tighter.%® |
In other words, the moreffort we spend looking for in- N T
dependent sets in our conflict graph, the better the bougd ** |
will be. Since we can not always hope to find optimal

solutions, any upper or lower bounds discovered by our %2 [

g
X

model need to be presented along with the amount of ef- Dpper Bound
fort required to find those bounds. Thus we require a °, 20 20 60 P 100
metric to measure thisffort We use the following sim- Effort

ple algorithm to find distinct independent sets:
Figure 5: Throughput with a bidirectional MAC

1. Start with an empty independent $&t

2. Consider a random ordering of vertices in the coiloreover, there is a complex relationship between the
flict graph. number of variables and constraints in a linear program,

' _ _ and the amount of time required to solve it. Thus, the
3. Consider the vertices of the graph in that order. Ahetric is only a rough guide for the amount of actual time
ways add the first vertex t®. (or CPU cycles) spent while finding the bound. In Sec-

. . tion 4.5, we will provide further discussion about the re-
4. Add a new vertex if and only if it does not have an.. : . .
: ationship between the effort metric and actual time spent

edge to any of the vertices added &so far. Once

. . . : in computation. The effort metric is defined in a similar
we consider all the verticekS will be of size at least S . ) )
one manner by considering cliques in case of searching for
' the upper bound, and by considering schedulable sets in

5. We check to see if we have previously discover@se of the physical model.
this independent set, and if not, we add constraints
based on this independent set to our linear prograqi.1 A Simple Topology

Otherwise we discard the set. _ o
We consider the topology shown in Figure 4. The net-

We consider this entire sequence as one uniefidrt work consists of 9 nodes, placed in a 3x3 grid. We make
Note that one unit of effort does not always result in ade claims that this topology is representative of typical
dition of a constraint or variable to the linear progrannireless networks. We have deliberately chosen a small,
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Nk TO[TTIT2[3 747576 [7[8[T9TI07TIIT7I27I3[I471I5716[ 1718719 [20[21] 22 23
0 O[T ITI([ITI[ITI[TI[TI][ T 1 1 1 1 1 0 1 0 1 0 0 0 0
1 A O ¢ ¢ ¢ e O I 1 1 1 0 1 0 1 1 1 1 0 0 0
2 II[OJITTI[TITI[I|TI[I]I 1 1 1 1 1 0 1 0 1 0 0 0 0
3 I T TITJTO[TI[TITI[TI|TI[O[] I 1 1 1 1 1 1 0 0 1 0 0 1 0
4 A e ¢ ¢ ¢ I O I 1 1 1 1 1 1 1 1 1 1 1 1 1
5 A e ¢ O O ¢ A O I 1 1 1 1 1 0 0 1 0 0 1 0
6 IJO0O[TI[ITI[IJO[O[TI[O] 1 1 1 1 1 1 0 0 1 0 1 1 1
7 S O S O O A O ! 1 1 1 0 1 0 1 1 1 1 0 0 0
8 A e ¢ ¢ ¢ 1 e O I 1 1 1 1 1 1 1 1 1 1 1 1 1
9 IJI[TIJO[I[TO]JTO[I|TI[O] 1 1 1 1 0 1 0 1 1 1 1 1 0 1

10 [T [ I T I TITI[TI[ITI[I|TI]O 1 1 1 1 1 1 1 1 1 1 1 1 1
14 TT[O0O I TIT[TI[TTI[TITO[ITO[ T 1 1 1 0 1 1 0 0 1 0 1 1 1
IS I [ IT I T ITTI[TI]TI[I]TI] T 1 1 1 1 0 1 1 1 1 1 1 1 1
16 O[O JTO[IJTITIJTITO[I[TO] T 1 1 1 1 1 0 0 1 1 1 1 1 1
17 T1I[ITI 1O I[TOJTO[TI[ITI] T 1 1 1 0 1 0 0 1 1 1 1 0 1
I8 [O[IJTO[O[TTI]TOJTO[ T[T ]I ] 1 1 1 0 1 1 1 0 1 1 1 1 1
19 [T1TIT1T(1 111 1 1 1 0 1 1
20 [0OJIJT0T[O0 0[O0 0 1 1 1 0 1
21 TOJO0JO0TJ0 O[TT[O 1 1 1 1 1 1 1
22 T0J0JTO0T[1I 1 0 0 0 1 0 1
23 J0J0JO0TO 0 0 1 1 1 1 0

Table 1: Conflict Graph in matrix form

simple topology, to facilitate detailed discussion of thibroughput: ()0 — 1 (i) 1 — 2 (iii) 0 — 3and2 — 5
results. (iv)y3 —6and5 - 8(V)0 — 1land6 — 7 (vi) ...

We start with several simplifying assumptions. W&/e can continue in this manner indefinitely. It is easy to
will relax these assumptions as we proceed through #ee that in alternate timeslots, node 0 gets to transmit to
section. We assume that the range of each node is eitliger node 1 or 3. Hence the optimal throughput is 0.5.
unit, i.e., just enough to reach its lateral neighbors, butin Figure 5, we show the upper and lower bound
not the diagonal ones. We also assume that the intar-throughput calculated by our model, as we devote
ference range is equal to the communication range. Wereasing amount of effort. As shown, the upper bound
assume an 802.11-like protocol model of interference dgrickly converges to the stable value of 0.667, which is
scribed in Section 3.5. This model requires both teemewhat higher than the optimal value. This is a clear
sender and the receiver to be free of interference fiadication of the fact that clique constraints alone are not
successful communication. We term thiidirectional sufficient to guarantee optimality, even in such a small
MAC. The resulting conflict graph for this scenario igraph, as noted in Section 3.2.4. The lower bound, on
shown in the matrix form in Table 1. A 0O indicates thahe other hand, steadily converges to the optimal value
the links are not in conflict with each other, while 1 indief 0.5. We have verified that our program has discovered
cates otherwise. For example, when node 0 is transraitindependent sets and cliques with 100 units of efforts.
ting to node 3, node 1 can hear these transmissions, and
hence can not transmit to node 2. Thus, link$) 1+ 3)
and 3 ( — 2) are in conflpt. ~4.1.2 Community Networking Scenario

We allow multipath routing. We assume that all wire-
less links have an identical capacity (i.e., speed) of 1 uditir model can also incorporate single path routing, mul-
and that all nodes have infinite buffers. We designdigle source-destination pairs, multiple channels as well
node O to be the sender, and node 8 to be the receigermultiple radios. We demonstrate this flexibility with
The sender always has data to send, and the receivar g¢@mmunity mesh networking scenario, in which mul-
always willing to consume the data. tiple users share an Internet connection, using a multi-

In this scenario, it is easy to see that the optimabp wireless network. We consider a map of a real sub-
throughput is 0.5. A convenient way to visualize theban neighborhood shown in Figure 6. There are 252
optimal transmission schedule is to imagine that timeuses in an area of 1 square kilometer. We select 35 of
is divided into slots of equal size, and in each slot Wieese houses at random, and assume that these houses
can transmit one packet between neighboring nodes, sare- equipped with hardware that enables them to par-
ject to constraints imposed by the conflict graph. Thdigipate in a wireless mesh network. We assume that
the following transmission schedule will achieve optimabmmunication range of the wireless technology is 200
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L
750

1000

Scenario| Optimal Throughput
I 0.5
Il 0.5
I 1
v 1

Table 2: Throughput for neighborhood mesh in various
scenarios

meters, while the interference range is 400 meters. In

Figure 7, we show the resulting network. We select a

node that is roughly at the center of the area and des-
ignate it as the Internet access point. We assume that
there are four senders, located as shown in the Figure. All
the senders communicate with the Internet access point,
and the metric of interest is the cumulative throughput of

these senders. We assume that all wireless links are of
unit capacity.

We begin with a baseline case, for which we assume
a bidirectional MAC and single path routing. Our linear
program is set to optimize the sum of the throughputs of
the four flows, with no consideration of fairness. In this
case, with about 5000 units of effort, upper and lower
bounds converge, and our model indicates that the maxi-
mum possible cumulative throughput is 0.5.

We may now ask what we can do to improve the cu-
mulative throughput. We consider four possibilities: (I)
Employ multi-path routing. (II) Double the range of each
radio. We also double the interference range. (lll) Leave
the radio range unchanged, but use two non-overlapping
channels instead of one. A node may communicate on
only one of the two channels at any given time, but may
switch between channels as often as necessary. (IV) Use
two radios instead of one at each node. The radios are
assumed to be tuned to two fixed, non-overlapping chan-
nels, so a node may communicate on the two channels
simultaneously. The throughput bounds in each of the
four scenarios are shown in Table 2. In each case, the
upper and the lower bounds converge to the same value,
which indicates that the solution is optimal.

The results indicate that neither multipath routing nor
doubling the range of the radio increases cumulative
throughput in the scenario we considered. On the other
hand, by using two channels instead of one, the network
may achieve the maximum possible throughput of 1. The
maximum possible throughput is 1 because the Internet
access point has only one radio. On the other hand, even
if we use two radios, the throughput remains at one. Itis

13



not hard to see why. The situation is equivalent to hav- 1
ing two separate copies of the baseline network, and then
adding up their throughputs. These scenarios illustrate o5 |
that the model we have developed can be used as a tool
for analysis and capacity planning of wireless multi- hog
networks.

0.6

0.4 r

Connectivity

4.2 Tradeoff Between Connectivity and
Throughput

0.2

In Section 3, we discussed how our model can accommo-
date nodes which do not send data in a greedy fashion, o+— :
. 4 8 12 16 20 24 28 32
i.e. they have a lower send rate. In [15, 20], the authors Number of nodes

have shown that the per node throughput in the network

decreases as the number of nodes in the network goes up.  Figure 8: Connectivity Ratio for 7x7 grid
These results, however, were derived under the assump-
tion that each node sends data as fast as it can. In othegy,
words, the desired sending rate of the node is assumed to
be 1. However, if each node has a lower desired seng-
ing rate, the richer connectivity provided by addmonaﬁ
nodes might help increase per node throughput, by @
lowing better routes to be discovered. We now exploré
this hypothesis using our model.

We consider a 7x7 grid, whose nodes are 200 met@s
apart horizontally, and vertically. We assume that th@
communication range is 250 meters, and the interferen8e 20 -
range is 500 meters. We set the link capacity to 1. We
assume a bidirectional MAC, similar to the one used to o
plot Figure 5. We use single-path routing.

We pick N nodes from the 49 available nodes, at ran-
dom, and without replacement. Half of these nodes are  Figure 9: Normalized per-flow throughput
designated as senders, and the other half are designated
as receivers. The senders and the receivers o2
flows in the network. Each sender is paired with onfyigure 9.
one receiver. We first calculate the fraction of flows for Note that when the sending rate is 0.01, the normalized
which the source and the destination lie in the same cpe+-flow throughput continues to rise even after the con-
nected component of the topology. We call this fractiorectivity has reached 1. This means that the richer con-
the connectivity ratio The connectivity ratio for variousnectivity provided by additional nodes allows for newer
values of NV is shown in Figure 8. The results show thabutes, and allows extra traffic to be sent through the
after 24 nodes (i.e. 12 flows) are selected, the connectigtwork. However, if each node sends at rate 1, the
ity ratio becomes 1. node might have little capacity left to forward traffic from

We then assign a sending rate Bfto each sender.other nodes. Thus, the average per-flow throughput peaks
Then, using our model, we calculate the optimal througkarly (i.e the network is saturated), and then declines
put using single-path routing. We divide the cumulativsdowly, as new nodes join the network, but fail to trans-
throughput by the number of flows (i.eN/2) to ob- mit most of their desired traffic. For sending rate of 0.1,
tain average per-flow throughput, and normalize it furthiére results are between these two cases. Note that the
by dividing it by D. The resulting normalized per-flonnon-monotonic nature of the graphs is due to fluctuation
throughput for various values d¥ and D is plotted in in random runs. As part of our future work, we plan to

12 16 20 24 28 32 36 40
Number of nodes
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in ns-2. The throughput numbers from these simulations

SchedulingOptimal 802.11 correspond tacenario (i)

Routing We then repeat our simulation using AODV [27], a

Optimal Optimal Aternative standard shortest path routing protocol. The resulting
throughput routing scheme throughput corresponds to the performance of gshe-
(solve LP) (ns simulation) nario (iv). To minimize the impact of AODV routing

Shortest-path Stﬁ(‘jte of <’=t1_” | State of art overhead, all nodes are static and simulations are run for
unaer optimal | (ns simulation) P
scheduling 50 seconds, ang enough to make the initial route setup
(solve LP) overhead negligible.

Based on the AODV simulation results, we obtain a
set of links that are used in the shortest paths between

Figure 10: Four scenarios. sources and destinations. We then modify the LP for-

mulation in Section 3 to compute bounds on the optimal

. _ . _ _ ~ throughput by excluding all but those links that lie on
verify the generality of this result using a wide variety e or more of the shortest paths. We do so by setting

topologies. _ the capacity of the excluded links to zero. We solve the
We stress that these results have been derived byré§ulting LP, and obtain the throughput &arenario (ii)

suming optimal routing, as well as optimal scheduling of 5;r aim is to compare throughput in scenario (i) to
packets. Inthe next section, we further discuss the impﬂ"ﬁbughput in scenario (ii). Similarly, we compare sce-
of these two assumptions. narios (i) and (iv) against each other. Note that g
not compare the throughput obtained by solving the LP
4.3 Benefits of Optimal Routing in Absence of model with the throughput obtained from ns-2 simula-

Optimal Scheduling tions.
We consider these four scenarios in a 7x7 grid (49

As shown in the previous sections, the optimal throughsdes). The horizontal and vertical separation between
put is achieved by selecting optimal routes and schedigjacent nodes is 200 meters. We assume the communi-
ing the links on the routes appropriately. A natural qu&Sstion range to be 250 meters, and the interference range
tion to ask is how much performance improvement 4§ he 500 meters. All other parameters are at their default
due to the optimal route selection, and how much is dé’é’(tings inns-2 For each simulation run, we randomly
to the optimal scheduling. Motivated by this questiogjck a few pairs of nodes as sources and destinations; the
we empirically examine four scenarios shown in Figgyyrce sends packets to the corresponding destination at
ure 10. They correspond to (i) optimal routing with 0p; constant bit rate equal to the wireless link capacity.
timal scheduling, (ii) shortest-path routing with optimal T5pje 3 shows the throughput ratios between optimal
s_cheduling, (iii) “optimgl” routing under 802.11 MAE_ routing and shortest path routing, under optimal schedul-
(iv) shortest-path routing under 802.11 MAC. We firgly These numbers are derived from our LP formulation.
briefly describe the approach we use to derive through-y)| cases, optimal routing yields comparable or better
put for each case, and then present the results. throughput than the shortest path routing when optimal
Given a network topology, we apply the algorithm degzneduling is used. The benefit of optimal routing varies
scribed in Section 3 to compute the optimal throughpyith the number of flows, as well as with the locations of
under single-path routing. This correspondséenario communicating nodes. For instance, when the two flows
OF are far apart and do not interfere with each other, the op-
To derive the performance of optimal routing undginal path achieves the same throughput as the shortest
802.11, we rums-2[24] simulations. To ensure that the)ath (e.g., numFlow=2 and run=1, 5); when the two flows
packets follow the optimal routes, we specify the optiterfere with each other, the optimal path takes a detour,
mal routes obtained in Scenario (i) as the static routggich results in reduced interference and hence higher

1This means routes derived in (i) used with 802.11 MAC. Wrouthm (e.g., the case of numFlow=2 and run= 2, 3,

may also be possible to derive optimal routes for contertiased 4).
scheduling, but that is not our intent here. Table 4 shows the throughput ratios between “optimal”
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Table 3: Throughput ratios between optimal routing and
shortest path routing, both under optimal scheduling irgple 5: Lower and upper bounds after 150,000 units of

numFlow | runl|run2|run3| run4 | run5 Grid Size | Lower Bound| Upper Bound| Time
2 1.00 | 1.25| 1.60 | 1.38| 1.00 3x3 0.25 0.25 2

4 141 | 1.00 | 144 | 1.43| 1.14 5x5 0.5 0.5 2

8 210 1.00| 1.05| 1.11| 1.12 7 0.495 0.5 25
9x9 0.474 0.5 35

11x11 0.479 0.5 40

7X7 grid. effort. Time in minutes.
numFlow | runl|run2|run3| run4 | run5 Effort | Lower Bound| Upper Bound| Time
2 1.08 | 243 | 1.53|1.80| 1.19 10000 0.443 0.5 2
4 1.07 | 1.54 | 0.79 | 1.02| 1.55 50000 0.48 0.5 5
8 355|122 | 0.50 | 1.14| 0.40 100000 0.49 0.5 13
150000 0.495 0.5 25
200000 0.5 0.5 41

Table 4: Throughput ratios between “optimal” path rout-
ing and shortest path routing, both under 802.11 MACTable 6: Lower and upper bounds after varying effort for
a 7x7 grid. a 7x7 grid. Time in minutes.

routing and shortest path routing, under under the 802Kkke an arbitrarily complex structure, we cannot wait un-
MAC. These numbers are based on ns-2 simulations. @pthe upper and lower bounds are within a small per-
timal path outperforms the shortest path even under ge@itage of each other since this may never happen. Even
802.11 MAC when number of flows in the network igfter all the cliques are found, the upper bound may still
small. On the other hand, the optimal path routing dags well above the optimal feasible solution. Thus, there is
not always outperform the shortest path routing undes easy way to decide when to stop the calculations. The
802.11 MAC when the number of flows is higher. Thigata we present next does indicate, however, that conver-
occurs because as network load increases, it is hardejdfice is quite good in many scenarios.

find paths that do not interfere with other flows in the
absence of optimal scheduling.

The above results are encouraging, and suggest fhgt
there is a potential to improve throughput by making Section 4.1, we mentioned that teéort metric pro-
route selection interference-aware. In ongoing work, Wejes only a rough indication of the computational costs
are continuing to investigate the benefits of interferenqg-ﬁnding the bounds. We now provide more data in this
aware routing under a wider range of scenarios. regard. Note that much of the data provided is for the
MATLAB [21] solver to which we had ready access; as
noted belowthe CPLEX [6] solver reduced the compu-
tation time by a factor of ,7albeit on a somewhat faster
In most of the previous results in this section, the upg@PU. Unfortunately, we only had limited access to the
and the lower bounds converged, assuring us of the ofiRLEX resource and were able to use it for only a few of
mality of the solution. When they did not converge, e.gur experiments. So it is important to note that there is
Figure 5, we were able to assure ourselves of optimaling potential for significant improvements over the com-
of the lower bound by manual verification. In genergdutational costs (for MATLAB) reported here.
however, the bounds may not converge, as there is nin Table 5, we consider the relationship between the
guarantee that even after adding all the clique constraisitee of the network and the amount of time required to
the upper bound will beschedulable This leads to the compute upper and lower bounds. The table shows the
guestion: how do we decide when to stop looking fbounds computed after 150,000 units of efforts for sev-
even tighter bounds? Given that the conflict graph mesal grid sizes, and the time required to compute them. In

Computational Costs

4.4 Convergence of Upper and Lower Bounds
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Flows | Lower Bound| Upper Bound| Time with 6 and 7 flows on a 2.7GHz Pentium machine, with
2 0.578 0.583 34 3.7GB of RAM. While we can not compare these en-
3 0.707 0.75 31 tries directly with the corresponding entries in Table 8,
4 0.758 0.833 29 as the machines used to run MATLAB and CPLEX are
5 0.799 0.875 31 different, the speedup is still quite significant: a reduc-
6 0.849 0.925 34 tion by a factor of 7, from 34-36 minutes down to 5 min-
7 0.861 1.00 36 utes. Moreover, MATLAB cannot solve the Mixed In-

_ _ _ teger Programs resulting from the formulation of single-
Table 7: 7x7 grid, multiple flows, 150,000 units of efforpath routing. We could only solve these using CPLEX.

Time in minutes. Unfortunately, we only had limited access to the CPLEX
F 3 B U B a7 software, so we are unable to report the full set of num-
ows | Lower Boun pper Boun ime bers for CPLEX.
6 0.849 0.925 5 . .
Since these numbers are based on a single run, and are
7 0.861 1.00 5

based only on grid graphs, which have a regular connec-
Table 8: 77 grid, multiple flows, 150,000 units of efforfiVity pattern, we cannot draw general conclusions from
with CPLEX. Time in minutes. them. However, some trends are useful to note. We ob-
serve that for grid networks, the amount of time required

_ _ _ _ to solve the problem increases with the number of nodes.
each case, there is a single flow in the network, with {g also see that for a given effort level, the time required

source and destination nodes at diagonally opposite ¢8"zompute the bounds does not depend significantly on
ners of the grid. The rest of the parameters are similagt@ number of flows in the network. However, the dif-
those used to plot Figure 5. Note that the upper and loW&fance between the upper and lower bounds for a given
bounds are not equal in all cases (but they are all clogghount of effort tends to increase with increase in the
which indicates that we might not have found the optimal,mper of flows.

solution in all cases. The coniputat_ions were done_usinqn case of irregular graphs, such as the neighborhood
MATLAB 6.1 [21], on a machine with 1.7Ghz Pentiumyanh shown in Figure 7, we have observed that the

processor, and 1.7GB of RAM. amount of time required to solve depends significantly

amount ofeffort, and the closeness of upper and lower gy, we note that we have not included any results
bounds, as well as the time required to compute thgs¢ylying physical model of communication in this sec-
bounds. The results are based on the 7x7 grid, with igst, e have also not included results that demonstrate
of the parameters similar to those used for Table 5. #3 \;se of links of different capacities. While we have
we discussed in Section 4.1, with more effort, we a8 ed such networks (physical models of interference,
likely to add more variables as well as more restrictiy& s of different capacities etc.), we could not do a de-
constraints in the linear program. So the bounds becofigaq study due to resource constraints. Therefore, we

tighter. _ _ _ have chosen to focus on the protocol model of interfer-
In Table 7, we consider the relationship between tBgce in this section.

number of flows in the network, and the amount of time

required to compute bounds for a given amount of ef-

fort. The results are based on a 7x7 grid, with multipfs Dealing with Node Mobility

flows. For each flow, the source is in the bottom row of

the grid, and it communicates with a destination locatgg far in this paper, we have assumed that all the nodes

in the same column, but in the top row. All other parann the wireless network are static. we now discuss some

eters are the same as Table 5. possible ways to incorporate node mobility in our model.
The software used to solve the linear program is al®oe way is to repeat the whole process all over: re-

a significant factor in the amount of time required to firmbnstruct connectivity graph and conflict graph based on

the optimal solution. In Table 8, we show the amoutite new topology, and solve the resulted LP problem.

of time taken by CPLEX [6] to solve the 7x7 grid caséy more efficient way is to take advantage of the efforts
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spent for the old topology, and incrementally compuggaph. We plan to further investigate this problem as part
new bounds. We propose the following incremental apf-our future work.
proach for the protocol model.

When a node moves from one place to another, it re-
sults in adding and/or removing links in a connectivit

?rrgsgc'i I;onr dezslﬁlgglfscfdsézg’ asszps:sil?ﬂﬂ;fd;_ Our results have demonstrated the flexibility of our
’ . . . . model and methodology for computing throughput
movement. The following discussions can be easily g Jbunds. However, our work does have some limitations
eralized to the case when more than one link is added or " ’ '
removed as we discuss below.
The above change in the connectivity graph IeadS_IIIOTlme-varylng channels pose a problem for our model.

) . . o . Time-varying channel characteristics could result either
the following changes in the conflict graph: (i) addin .
. . - . .. Trom the interference caused by other nodes or from
link AC in the connectivity graph results in adding its

. L ) . hysical effects, e.g. mobility-induced fading. Our
corresponding vertex to the original conflict graph; in ad- 4 . .
o . . ; . . model does account for fluctuations in the noise level at a
dition, we need to identify the links that conflict with the . . .
node due to the interfering transmissions of other nodes.

new link AC, and add edges to the original conflict gra . .
L . . . owever, it does not accommodate fluctuations caused
to reflect these conflicts; and (ii) removing licgkB in the . . R
phenomena such as fading. As with mobility, it may

connectivity graph results in deleting its correspondiy feasible to recompute from scratch if the fluctuations

vertex and all its incident edges from the original confliﬁt
graph appen slowly.

Based on the above changes in the conflict graph, The computational cost numbers presented in Section

. ) 4.5 suggest that our methodology is feasible for mod-
can incrementally update the independent set constraints _.

) est sized networks of the order of a few hundred nodes,

to derive a new lower bound as follows. To account for. . . : .

o ) . o . which may be typical of a neighborhood wireless net-

the addition of linkA C' in connectivity graph, we add in- o .

. h o work. However, the methodology in its current form is

dependent set constraints that contaid to the original likely to be too expensive for large-scale networks con
LP. To account for the deletion of link B, we remove in- y P 9

. .- . taining thousands or millions of nodes, e.g. sensor net-
dependent set constraints containiag¢ from the orig- . .
. works. Since energy consumption rather than through-
inal LP. If the topology change does not cause chan%e

1o the obiecti , . . 'é% is often the metric of interest in such large-scale net-
jective function (i.e., links between sources a R

their neighbors remain the same or links between sirmgrks’ this limitation may be moot.

and their neighbors remain the same), then LP solvers,

such as Ipsolveinc [16], can take advantage of incre7 Conclusion and future work

mental changes in the linear constraints, and more effi-

ciently derive solution to the new LP than solving it starta this paper we have presented a model and methodol-

ing from scratch. ogy for computing bounds on the optimal throughput that
Similarly, to derive a new upper bound, we incremenan be supported by a multi-hop wireless network. A key

tally update the clique constraints as follows. To accoudistinction compared to previous work is that we work

for the addition of linkA C, we add clique constraints inwith any given wireless network configuration and work-

volving A C to the original LP; to account for the deletiottoad specified as inputs. No assumptions are made on the

of link AB, we remove clique constraints involving B homogeneity of nodes with regard to radio range or other

from the original LP. As before, as long as the topologiharacteristics, or regularity in communication pattern.

changes do not affect the objective function, LP solvaie use aconflict graphto model wireless interference

can more efficiently derive a solution to the new LP basadder various conditions (multiple radios, multiple chan-

on the incremental changes in the linear constraints. nels, etc.). We view the generality of our methodology
Incrementally computing the lower and upper boundsad the conflict graph framework as a key contribution

is hard under the physical model, because in extremefaur work.

node’s movement can affect noise level experienced byAlthough the bounds that we compute on the optimal

all nodes, thereby having a global impact on the conflibtoughput assume the ability to finely control and care-

Discussion of Limitations
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fully schedule packet transmissions, the optimal routgg] V. ChavtaL. Linear Programming W. H. Freeman and

yielded by our analysis often outperform shortest path

routes even under “real-world” conditions such as uncqs;
ordinated scheduling and MAC contention. In ns-2 sim-

ulations, we have observed a throughput improvement of
over a factor of 2 in some cases. The reason for this sig-
nificant improvement is that the optimal routes often teng)
to be less interference-prone than the default shortelst pat
routes.

We have also considered the impact of new nodes on
the per-node throughput in multi-hop wireless networks.
Contrary to previous results, we have found that the ags
dition of new nodes can be beneficial for all nodes, un-
der the (realistic) assumption that each node is active for
only a small fraction of the time. The richer connectiv-g]
ity enabled by new nodes presents increased opportuhl—
ties for routing around interference “hotspots” in the net-
work. This more than offsets the increase in traffic Io?fo]
caused by the new nodes.

In ongoing work, we are continuing to investigate the
benefits of interference-aware routing under a wide ral{é%]
of scenarios. Our next step after that would be to design
a practical interference-aware routing protocol, which

Compnay, 1983.

D. S. J. D. Couto, D. Aguayo, B. A. Chambers, and
R. Morris. Performance of multihop wireless networks:
Shortest path is not enough. 18t Workshop on Hot Top-
ics in NetworksOct. 2002.

llog cplex suite, 2003.
http://www.ilog.com/products/cplex/.

[7] J. Edmonds. Maximum matching and a polyhedron with

0,1-verticesJournal of Research of the National Bureau
of StandardsB69:125-130, 1965.

D. Estrin, R. Govindan, J. Heidemann, and S. Kumar.
Next century challenges: Scalable coordination in sensor
networks. INnACM MOBICOM Aug. 1999.

M. R. Garey and D. S. Johnso&omputers and Intrac-
ctability: A guide to the theory of NP completneds.
H. Freeman and Company, 1979.

M. Gastpar and M. Vetterli. On the capacity of wireless
networks: the relay case. IEEE INFOCOM Jun. 2002.

M. Grossglauser and D. Tse. Mobility increases the ca-
pacity of ad-hoc wireless networks. IBEE INFOCOM
Apr. 2001.

addresses interesting challenges such as construdigy M- Grotschel, L. Lovasz, and A. Schrijver. The ellipdoi

the conflict graph and computing optimal routes in a
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realistic wireless networks could give rise to complex

conflict graphs? Our answer is both yes and no. Our
A Proof of Theorem 1 answer is “yes” because the maximum independent set

problem is hard due to the existence of odd holes and odd
Suppose we are given a graphand we want to COM- gnti-holes in the given graph As shown in Figure 11,
pute the cardinality of its maximum independent set. Wegry realistic and simple grid graphs could have conflict
now construct a wireless network such that the optirrbq,hphs with many odd holes and odd anti-holes. On the
throughput it can support under the protocol interferengger hand, our answer is “no” because realistic conflict
model is the same as the cardinality of the maximum @raphs may have some special property or structure that
dependent set af. Create two wireless nodes, a soureg,id make the problem of finding the maximum inde-
s and a receiver. For every vertex inG add a wireless pendent set easy. We have been unable to identify any
link of unit capacity between andr. For every edge sych property, but our failure does not mean that no such
between two nodes it", assume a conflict between thggnerty exists (though the complex conflict graphs aris-
corresponding wireless links in the network. (Such a nﬁ{g from the simple grid graphs, as in Figure 11, diminish
work may arise, for instance, if nodesandr are each oyr gptimism). In view of this, we believe that the heuris-
equipped with multiple radios set either to the same (i.e approach presented in Section 3 is reasonable. In the
interfering) channel or to separate (i.e., non-inter@Xings|jowing subsection, we discuss certain special cases in

is achieved if and only if a maximum independent set in
G is scheduled. Thus finding the optimal throughput ef

2 ._
the wireless network is equivalent to finding the cardinal- ' & 9raph does not have any odd holes or anti-holes then the
graph is termegberfect[22], and for perfect graphs there are polyno-

ity of the maximum independent set of graghwhich is  mial time algorithms to solve the maximum independent selblem
known to be a hard problem. [12].
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B Polynomial Time Algorithm in Spe- Nandagopal [19] present an approximation algo-
cial Cases rithm for a similar case. They also assume zero conflict
radius but the underlying conflict graph can be arbitrary

Even i ial h I ial i laorith raphs instead of a grid graph. We note that our algo-
ven in special cases where polynomia’ time algorit m still finds the optimal solution for the problem

may exist, they may be too expensive to be of praciical Within polynomial time. Since the conflict radius is zero,

terest. One such special case arises in the context of %Hflict graph is just a line graph of the connectivity

graphs when the conflict radius is zero. By zero confli Loph. Independent set polvtope of the conflict aranh
radius we mean that two links conflict if and only if the? P P polytop grap

) . S just the matching polytope of the connectivity graph.
§hare an endpoint. _In this S|r_nple a’?d someyvhat unreaIlzlﬁ'monds [7] gave a linear program describing the
tic setting, the conflict graph is nothing but e graph matching polytope of an arbitrary graph. Hence, for this

of the unde_rlying grid network. The Iin_e graph(G),_of problem, we can describe the independent set polytope
a graphG, is a graph on the edges Gf i.e., the vertices ; S .
grapns, grap 9 P by a linear program. This implies that our algorithm

of L(G) correspopd o the e.dges Gt There iS_ an edgecan compute the optimal solution for the case when the
between two vertices df(G) if the corresponding edges

. ) conflict radius is zero.
in G have a vertex in common.

Note that we have assume that our network in this
case is a grid. A grid is a bipartite graph, and bipartfe Theoretical limits on the upper-
graphs are perfect. The line graph of a perfect graph  phound
is perfect too. Hence the conflict graph of a grid graph

with a zero conflict radius is a perfect graph. A perfegine of the questions, which our upper-bounding heuris-
graph has the property that its set of clique constraifitsraises, is how good is the upperbound if we include all
define its independent set polytope. So if we write a lithe clique constraints, which can itself take exponential
ear program with all the clique constraints together wigdmputation time. We have given examples (odd holes)
the flow constraints then we can find the optimal netwoglrlier which show that unlike the lowerbound, the up-
throughput. The problem, however, is that the numiesrhound may not always be tight. The next question
of cliques could still be exponentially many. (Althougl, is the upperbound even likely to be within any con-
this does not happen with grid graphs, it could very welant factor of the optimal. Unfortunately, the answer
happen with other perfect graphs.) A solution is to uggn be no. Consider the two nodes example discussed
the ellipsoid algorithm [18] to optimize linear functiong, Appendix A. Let the conflict graph b&. We have
over a polytope. This algorithm does not require all tigeady shown that the maximum throughput fremo r
constraints in an explicit form to optimize a linear fungs the cardinality of the maximum independent se€in
tion over a polytope, hence we do not have to enumgfom probabilistic graph theory we know that there are
ate the exponentially many clique constraints. The @fangle-free graphs on nodes which have independent
lipsoid algorithm only needs a subroutine that givensge ofO(v/n). Suppose the conflict graph is one of
potential solution indicates whether the constraints gk@se graphs. Sina@ is triangle-free, only clique con-
satisfied or not, and if not identifies at least one cogyraints are edges. So using each wireless link for half
straint which is not satisfied. Such a subroutine is Ca”% time satisfies all the cliques, the upperbound can't be
separation oracle The separation oracle for our probpetter thatn /2, whereas the optimal i© (/7). So the
lem would be one that finds a violated clique constraim$perbound is not within any constant factor of optimum
given a usage vector. This can be accomplished USingtF’ﬂ@ughput.
Grotschel semidefinite programming algorithm for find- The next question, then, is whether the quality of the
ing the heaviest clique [13]. However, both the ellipsojghperbound improves when we add all the odd-hole and
algorithm and the semidefinite algorithm have a runnigge odd-anti-hole constraints. We do not explore this
time of O(n?), so in combination their running time igyuestion, but do believe that the upperbound will not be
O(n®). Thus this polynomial time algorithm is not veryyithin any constant factor even then. The reason for our
practical. belief is that the stable set polytope can include compli-
As discussed in Section 2, Kodialam anchted structures such as odd wheels, that will need to be

21



considered even after all odd-hole and odd anti-hole con-
straints have been discovered. Instead, we now present a
technique that may improve the convergence rate of our
algorithm, but does not guarantee tightness.

The technique is a separation oracle that given a con-
flict graphG and a candidate solutiokhfinds a violated
odd hole constraint, if any. Such an oracle could be used
to improve the convergence rate of the algorithm pre-
sented in Section 3. Note that this separation oracle is ap-
plicable to general graphs; for the perfect conflict graph
considered in Section B above, there are no odd holes
anyway.

Consider an odd holefl, of the given conflict graph
G. Any vector )\ inside the independent set polytope of
G must satisfy the following)~,cy \i < (|JH| —1)/2.

A violated odd hole is one for which this constraint is not
satisfied. Before attempting to find a violated odd hole,
we may assume that the givarsatisfies all the edge con-
straints, i.e.\; + A; < 1 for every edge in, because

if it does not then we can include the violated edge con-
straint to shrink the upperbounding polytope. After mak-
ing this assumption we define a weight function on the
edges. For every edgg of the graphG, we define its
weight to bel — A\; — \;, which is guaranteed to be non-
negative. With this weight function we find the lightest
(i.e., least-weight) odd cycle in the graph. The lightest
odd cycle can be found using a bipartite graph construct
as explained in the next paragraph. Iete the light-
estodd cycley”;ic-(1 — A; — A;) < 1is equivalent to

YiccNi > ‘C|2‘1. So, if the weight of the lightest odd
cycle is less than 1 then the cycle is a violated odd hole.
If the weight of the lightest odd cycle is 1 or more then
there is no violated odd hole.

Now we come to the question of efficiently finding the
lightest odd cycle. Lefy be the graph in which we need
to find the lightest odd cycle. We construct a bipartite
graph, B, as follows. For every vertex in G we put
two verticesy; andwv, in B (the subscriptg andr can
conceptually be thought of as representing the left and
right “halves” of the the bipartite grapR). For every
edgeuwv in G we put two edges; v, andu,.v; in B. Now
an odd cycle inG becomes an odd length pathihe.g.,
uwvwu becomesy, v, wiu,.. So for every vertex. in G we
find the shortest path from; to u,. in B. The shortest
such path inB yields the lightest odd cycle i&'.
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