Abstract
We study the problem of energy-balanced data propagation in wireless sensor networks. The energy balance property guarantees that the average per sensor energy dissipation is the same for all sensors in the network, during the entire execution of the data propagation protocol. This property is important since it prolongs the network’:s lifetime by avoiding early energy depletion of sensors.
We propose a new algorithm that in each step decides whether to propagate data one-hop towards the final destination (the sink), or to send data directly to the sink. This randomized choice balances the (cheap) one-hop transimssions with the direct transimissions to the sink, which are more expensive but “bypass” the sensors lying close to the sink. Note that, in most protocols, these close to the sink sensors tend to be overused and die out early.
By a detailed analysis we precisely estimate the probabilities for each propagation choice in order to guarantee energy balance. The needed estimation can easily be performed by current sensors using simple to obtain information. Under some assumptions, we also derive a closed form for these probabilities.
The fact (shown by our analysis) that direct (expensive) transmissions to the sink are needed only rarely, shows that our protocol, besides energy-balanced, is also energy efficient.
Access this article
Rent this article via DeepDyve
Similar content being viewed by others
References
I.F. Akyildiz, W. Su, Y. Sankarasubramaniam and E. Cayirci, Wireless sensor networks: A survey, The Journal of Computer Networks 38 (2002) 393–422.
I.F. Akyildiz, W. Su, Y. Sankarasubramaniam and E. Cayirci, A survey on sensor networks, The IEEE Communications Magazine (August 2002) 102–114.
A. Boukerche, I. Chatzigiannakis and S. Nikoletseas, A new energy efficient and fault-tolerant protocol for data propagation in smart dust networks using varying transmission range, Accepted in the Computer Communications Journal, Elsevier, (2004).
A. Boukerche, X. Cheng and J. Linus, Energy-aware data-centric routing in microsensor networks, ACM Madeling Analysis and Simulation of Wireless and Mobile Systems (MSWIM2003) (Paris, France, 2003) pp. 42–49.
A. Boukerche and S. Nikoletseas, Protocols for data propagation in Wireless Sensor Networks: A survey, chapter in the book wireless communications systems and networks, Mohsen Guizani, (Eds.) Kluwer Academic Publishers, Date Published (06/2004), ISBN: 0306481901, 718 p.
A. Boukerche and S. Nikoletseas, Energy efficient algorithms in wireless sensor networks invited book chapter, Springer Verlag, to appear in (2004).
I. Chatzigiannakis, S. Nikoletseas and P. Spirakis, Smart dust protocols for Local Detection and Propagation, in: Proc. 2nd ACM Workshop on Principles of Mobile Computing—POMC’2002. Also accepted in the ACM Mobile Networks (MONET) Journal, Special Issue on Algorithmic Solutions for Wireless, Mobile, Ad-Hoc and Sensor Networks, to appear.
I. Chatzigiannakis, T. Dimitriou, S. Nikoletseas and P. Spirakis, A probabilistic algorithm for efficient and robust data propagation in smart dust networks, in Proc. 5th European Wireless Conference (EW’04), Barcelona, Spain Also, invited in the Journal of Ad-Hoc Networks (under review) (February, 2004).
I. Chatzigiannakis, T. Dimitriou, M. Mavronicolas, S. Nikoletseas and P. Spirakis, A comparative study of protocols for efficient data propagation in smart dust networks, in Proc. International Conference on Parallel and Distributed Computing–EUPOPAR 2003. Also Accepted in the Parallel Processing Letters Journal (PPL), Vol. 13 (2003) pp. 615–627.
I. Chatzigiannakis and S. Nikoletseas, A sleep-awake protocol for information propagation in smart dust networks, in Proc. 3rd Workshop on Mobile and Ad-Hoc Networks (WMAN)–IPDPS Workshops, (IEEE Press, 2003) p. 225.
C. Efthymiou, S. Nikoletseas and J. Rolim, Energy balanced data propagation in wireless sensor networks, in Proc. 4th Workshop on Mobile, Ad-Hoc and Sensor Networks (WMAN)–IPDPS Workshops, (IEEE Press, 2004).
W. R. Heinzelman, A. Chandrakasan and H. Balakrishnan, Energy-efficient communication protocol for wireless microsensor Networks, in Proc. 33rd Hawaii International Conference on System Sciences–HICSS’ (2000).
C. Intanagonwiwat, R. Govindan and D. Estrin, Directed diffusion: A scalable and robust communication paradigm for sensor networks, in Proc. 6th ACM/IEEE International Conference on Mobile Computing–MOBICOM’ (2000).
C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann and F. Silva, Directed diffusion for wireless sensor networking, Extended version of [13].
J.M. Kahn, R.H. Katz and K.S.J. Pister, Next century challenges: Mobile networking for smart dust, in Proc. 5th ACM/IEEE International Conference on Mobile Computing (September 1999) pp. 271–278.
S. Nikoletseas, I. Chatzigiannakis, A. Antoniou, C. Efthymiou, A. Kinalis and G. Mylonas, Energy efficient protocols for sensing Multiple Events in Smart Dust Networks, in Proc. 37th Annual ACM/IEEE Simulation Symposium (ANSS’04), (IEEE Computer Society Press, 2004) pp. 15–24.
S. Nikoletseas, C. Raptopoulos and P. Spirakis, The existence and efficient construction of large independent sets in general random intersection graphs, in The Proceedings of the 31st International Colloquium on Automata, Languages and Programming (ICALP), Lecture Notes in Computer Science (Springer Verlag, 2004).
S. M. Ross, Stochastic processes, 2nd Edition. John Wiley and Sons, Inc., (1995).
C. Schurgers, V. Tsiatsis, S. Ganeriwal and M. Srivastava, Topology management for sensor networks: Exploiting latency and density, in Proc. MOBICOM (2002).
P. Triantafilloy, N. Ntarmos, S. Nikoletseas and P. Spirakis, NanoPeer networks and P2P worlds, in Proc. 3rd IEEE International Conference on Peer-to-Peer Computing, (2003).
M. Singh, and V. Prasanna, Energy-optimal and energy-balanced sorting in a single-hop wireless sensor network, in Proc. First IEEE International Conference on Pervasive Computing and Comminications – PERCOM (2003).
Author information
Authors and Affiliations
Corresponding author
Additional information
This work has been partially supported by the IST/FET/GC Programme of the European Union under contract numbers IST-2001-33135 (CRESCCO) and 6FP 001907 (DELIS). A perliminary version of the work appeared in WMAN 2004 [11].
Charilaos Efthymiou graduated form the Computer Engineering and Informatics Department (CEID) of the University of Patras, Greece. He received his MSc from the same department with advisor in S. Nikoletseas. He currently continuous his Ph.D studies in CEID with advisor L. Kirousis. His research interest include Probabilistic Techniques and Random Graphs, Randomized Algorithms in Computationally Hard Problems, Stochastic Processes and its Applications to Computer Science.
Dr. Sotiris Nikoletseas is currently a Senior Researcher and Managing Director of Research Unit 1 (“Foundations of Computer Science, Relevant Technologies and Applications”) at the Computer Technology Institute (CTI), Patras, Greece and also a Lecturer at the Computer Engineering and Informatics Department of Patras University, Greece. His research interests include Probabilistic Techniques and Random Graphs, Average Case Analysis of Graph Algorithms and Randomized Algorithms, Fundamental Issues in Parallel and Distributed Computing, Approximate Solutions to Computationally Hard Problems. He has published scientific articles in major international conferences and journals and has co-authored (with Paul Spirakis) a book on Probabilistic Techniques. He has been invited speaker in important international scientific events and Universities. He has been a referee for the Theoretical Computer Science (TCS) Journal and important international conferences (ESA, ICALP). He has participated in many EU funded R&D projects (ESPRIT/ALCOM-IT, ESPRIT/GEPPCOM). He currently participates in 6 Fifth Framework projects: ALCOM-FT, ASPIS, UNIVERSAL, EICSTES (IST), ARACNE, AMORE (IMPROVING).
Jose Rolim is Full Professor at the Department of Computer Science of the University of Geneva where he leads the Theoretical Computer Science and Sensor Lab (TCSensor Lab). He received his Ph.D. degree in Computer Science at the University of California, Los Angeles working together with Prof. S. Greibach. He has published several articles on the areas of distributed systems, randomization and computational complexity and leads two major projects on the area of Power Aware Computing and Games and Complexity, financed by the Swiss National Science Foundation. Prof. Rolim participates in the editorial board of several journals and conferences and he is the Steering Committee Chair and General Chair of the IEEE Distributed Computing Conference in Sensor Systems.
Rights and permissions
About this article
Cite this article
Efthymiou, C., Nikoletseas, S. & Rolim, J. Energy balanced data propagation in wireless sensor networks. Wireless Netw 12, 691–707 (2006). https://doi.org/10.1007/s11276-006-6529-y
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11276-006-6529-y