Skip to main content
Log in

Sequential Monte Carlo localization in mobile sensor networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Node localization in wireless sensor networks is essential to many applications such as routing protocol, target tracking and environment surveillance. Many localization schemes have been proposed in the past few years and they can be classified into two categories: range-based and range-free. Since range-based techniques need special hardware, which increases the localization cost, many researchers now focus on the range-free techniques. However, most of the range-free localization schemes assume that the sensor nodes are static, the network topology is known in advance, and the radio propagation is perfect circle. Moreover, many schemes need densely distributed anchor nodes whose positions are known in advance in order to estimate the positions of the unknown nodes. These assumptions are not practical in real network. In this paper, we consider the sensor networks with sparse anchor nodes and irregular radio propagation. Based on Sequential Monte Carlo method, we propose an alterative localization method—Sequential Monte Carlo Localization scheme (SMCL). Unlike many previously proposed methods, our work takes the probabilistic approach, which is suitable for the mobile sensor networks because both anchors and unknown nodes can move, and the network topology need not be formed beforehand. Moreover, our algorithm is scalable and can be used in large-scale sensor networks. Simulation results show that SMCL has better localization accuracy and it can localize more sensor nodes when the anchor density is low. The communication overhead of SMCL is also lower than other localization algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hightower, J., & Borriello, G. (2001). Location systems for ubiquitous computing. IEEE Computer, 34(8), 57–66.

    Google Scholar 

  2. Wellenhoff, B. H., Lichtenegger, H., & Collins, J. (1997). Global positioning system: Theory and practice (4th ed). New York, LLC: Springer-Verlag.

    Google Scholar 

  3. Jourdan, D. B., Deyst, J. J., Jr., Win, M. Z., & Roy, N. (2005). Monte Carlo localization in dense multipath environments using UWB ranging. In Proceedings of ICU 2005 (pp. 314–319). Zurich, Switzerland: IEEE Press.

  4. Goldenberg, D. K., Krishnamurthy, A., Maness, W. C., Yang, Y. R., Young, A., Stephen Morse, A., Savvides, A., & Anderson, B. D. O. (2005). Network localization in partially localizable networks. In Proceedings of INFOCOM 2005 (Vol. 1, pp. 313–326). Miami, FL, USA: IEEE Press.

  5. Zaruba, G. V., Huber, M., & Kamangar, F. A. (2004). Monte Carlo sampling based in-home location tracking with minimal RF infrastructure requirements. In Proceedings of the IEEE Globecom 2004 (Vol. 6, pp. 3624–3629). Dallas, TX, USA: IEEE Press.

  6. Savvides, A., Han, C.-C., & Strivastava, M. B. (2001). Dynamic fine-grained localization in ad-hoc networks of sensors. In Proceedings of MobiCom’01 (pp. 166–179). Rome, Italy: ACM Press.

  7. Niculescu, D., & Nath, B. (2003). Ad hoc positioning system (APS) using AOA. In Proceedings of INFOCOM 2003 (pp. 1734–1743). San Francisco, CA, USA: IEEE Press.

  8. McGuire, M., Plataniotis, K. N., & Venetsanopoulos, A. N. (2003). Location of mobile terminals using time measurements and survey points. IEEE Transactions Vehicular Technology, 52(4), 999–1011.

    Article  Google Scholar 

  9. Patwari, N., & Hero, A. O., III. (2003). Using proximity and quantized RSS for sensor localization in wireless networks. In Proceedings of IEEE/ACM WSNA’03 (pp. 20–29). San Diego, CA, USA: ACM Press.

  10. Niculescu, D., & Nath, B. (2003). DV based positioning in ad hoc networks. Kluwer Journal of Telecommunication Systems, 22, 267–280.

    Article  Google Scholar 

  11. Bulusu, N., Heidemann J., & Estrin, D. (2001). Density adaptive algorithms for beacon placement in wireless sensor networks. In Proceedings of IEEE ICDCS’01. Phoenix, AZ, USA: IEEE Press.

  12. Bulusu, N., Heidemann, J., & Estrin, D. (2000). GPS-less low cost outdoor localization for very small devices. IEEE Personal Communications, Special Issue on "Smart Spaces and Environments", 7(5), 28–34.

    Google Scholar 

  13. He, T., Huang, C., Blum, B. M., Stankovic, J. A., & Abdelzaher, T. (2003). Range-free localization schemes for large scale sensor networks. In Proceedings of MobiCom’03 (pp. 81–95). San Diego, CA, USA: ACM Press.

  14. Niculescu, D. (2004). Positioning in ad hoc sensor networks. IEEE Network, 18(4), 24–29.

    Article  MathSciNet  Google Scholar 

  15. Savvides, A., Girod, L., Srivastava, M. B., & Estrin, D. (2004). Localization in sensor networks. In Proceedings of Wireless Sensor Networks (pp. 327–349). Kluwer Academic Publishers.

  16. Nagpal, R. (1999). Organizing a global coordinate system from local information on an Amorphous Computer, A.I. Memo No. 1666, MIT AI Laboratory.

  17. Nagpal, R., Shrobe, H., & Bachrach, J. (2003). Organizing a global coordinate system from local information on an ad hoc sensor network. In Proceedings of IPSN ’03 (pp. 333–348). Palo Alto, CA, USA: Springer.

  18. Wang, W., & Zhu, Q. (2006). High accuracy geometric localization scheme for wireless sensor networks. In Proceedings of International Conference on Communications, Circuits and Systems (ICCCAS) (Vol. 3, pp. 1507–1512). Guilin, China: IEEE Press.

  19. Galstyan, A., Krishnamachari, B., Lerman, K., & Pattem, S. (2004). Distributed online localization in sensor networks using a moving target. In Proceedings of the Third ACM International Symposium on Information Processing In Sensor Networks, (pp. 61–70). Berkeley, CA, USA: ACM Press.

  20. Liu, C., Wu, K., & He, T. (2004). Sensor localization with ring overlapping based on comparison of received signal strength indicator. In Proceedings of IEEE International Conference on Mobile Ad-hoc and Sensor Systems (pp. 516–518). Fort Lauderdale, FL, USA: IEEE Press.

  21. Dellaert, F., Fox, D., Burgard, W., & Thrun, S. (1999). Monte Carlo localization for mobile robots. In Proceedings of IEEE International Conference on Robotics and Automation (ICRA99), (Vol. 2, pp. 1322–1328). Detroit, MI, USA: IEEE Robotics and Automation Society.

  22. Thrun, S., Fox, D., Burgard, W., & Frank, D. (2001). Robust Monte Carlo localization for mobile robots. Artificial Intelligence Journal, 128(1–2), 99–141.

    Article  MATH  Google Scholar 

  23. Patwari, N., Ash, J. N., Kyperountas, S., Hero, A. O. III, Moses, R. L., & Correal, N. S. (2005). Locating the nodes: Cooperative localization in wireless sensor networks. IEEE Signal Processing Magazine, Special issue on Signal Processing in Positioning and Navigation, 22(4), 54–69.

    Google Scholar 

  24. Biswas, R., Thrun, S., & Guibas, L. (2004). A probabilistic approach to inference with limited information in sensor networks. In Proceedings of the 3rd International Symposium on Information Processing in Sensor Networks (pp. 269–276). Berkeley, CA, USA: ACM Press.

  25. Henderson, T. C., Grant, E., & Luthy, K. (2005). Precision localization in Monte Carlo sensor networks. In Proceedings of the 18th International Conference on Computer Applications in Industry and Engineering (pp. 26–31). Honolulu, HI, USA: ISCA.

  26. Hu, L., & Evans, D. (2004). Localization for mobile sensor networks. In Proceedings of MobiCom 2004 (pp. 45–57). Philadelphia, PA, USA: ACM Press.

  27. Handschin, J. E. (1970). Monte Carlo techniques for prediction and filtering of non-linear stochastic processes. Automatica, 6, 555–563.

    Article  MATH  MathSciNet  Google Scholar 

  28. Bucy, R., & Senne, K. (1971). Digital synthesis of nonlinear filter. Automatica, 7, 287–298.

    Article  MATH  Google Scholar 

  29. Isard, M., & Blake, A. (1996). Contour tracking by stochastic propagation of conditional density. In Proceedings of the 4th European Conference on Computer Vision-Volume I (pp. 343–356). Cambridge, UK: Springer.

  30. Doucet, A., Godsill, S., & Andrieu, C. (2000). On Sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing, 10, 197–208.

    Article  Google Scholar 

  31. Doucet, A., de Freitas, N., & Gordon, N. (2001). An introduction to sequential Monte Carlo methods. In A. Doucet, N. de Freitas, & N. Gordon (eds.). Sequential Monte Carlo methods in practice. New York: Springer-Verlag.

    Google Scholar 

  32. Maybeck, P. S. (1979). Stochastic models, estimation and control (Vol. 1). New York: Academic Press.

    MATH  Google Scholar 

  33. Anderson, B. D. O., & Moore, J. B. (1979). Optimal filtering. NJ: Prentice-Hall.

    MATH  Google Scholar 

  34. Gordon, N. J., Salmond, D. J., & Smith, A. F. M. (1993). Novel approach to nonlinear/non-Gaussian Bayesian state estimate. IEE Proceedings, 140, 107–113.

    Google Scholar 

  35. Arulampalam, S., Maksell, S., Gordon, N., & Clapp, T. (2002). A tutorial on particle filters for on-line non-linear/non-Gaussian Bayesian tracking. IEEE Transactions of Signal Processing, 50(2), 174–188.

    Article  Google Scholar 

  36. Camp, T., Boleng, J., & Davies, V. (2002). A survey of mobility models for ad Hoc networks research. Wireless Communications and Mobile Computing, 2(5), 483–502.

    Article  Google Scholar 

  37. Zhou, G., He, T., Krishnamurthy, S., & Stankovic, J. A. (2004). Impact of radio irregularity on wireless sensor networks. In Proceedings of MobiSys 2004 (pp. 125–138). Boston, MA, USA: ACM Press.

  38. Zhou, G., He, T., Krishnamurthy, S., & Stankovic, J. A. (2006). Models and solutions for radio irregularity in wireless sensor networks. ACM Transactions on Sensor Networks, 2(2), 221–262.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Wang.

Additional information

The work was supported partially by the National Science Foundation (NSF) of China under the contract number 60671033, and the Doctoral Research Foundation of the Ministry of Education of China under the contract number 20060614015.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Zhu, Q. Sequential Monte Carlo localization in mobile sensor networks. Wireless Netw 15, 481–495 (2009). https://doi.org/10.1007/s11276-007-0064-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-007-0064-3

Keywords

Navigation