Skip to main content
Log in

Integrated power and handoff control for next generation wireless networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, joint downlink power control and handoff design is formulated as optimization problems that are amenable to dynamic programming (DP). Based on the DP solutions which are impractical, two new algorithms suitable for next generation wireless networks are proposed. The first one is an integrated hard handoff/power control scheme that endeavors a tradeoff between three performance criteria: transmitted power, number of handoffs, and call quality. The second is a soft handoff/power control algorithm that also takes into account the additional cost of utilizing soft handoff. The proposed algorithms present a paradigm shift in integrated handoff/power control by capturing the tradeoff between user satisfaction and network overhead, therefore enjoy the advantages of joint resource allocation, and provide significant improvement over existing methods. The achievable gains and the tradeoffs in both algorithms are verified through simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee, W. C. Y. (1991). Overview of cellular CDMA. IEEE Transactions on Vehicular Technology, 40(2), 291–302.

    Article  Google Scholar 

  2. Gilhousen, K. S., Jacobs, I. M., Padovani, R., Viterbi, A. J., Weaver, L. A., & Wheatley, C. E. (1991). On the capacity of a cellular CDMA system. IEEE Transactions on Vehicular Technology, 40(2), 303–312.

    Article  Google Scholar 

  3. Jung, P., Baier, P. W., & Steil, A. (1993). Advantages of CDMA and spread spectrum techniques over FDMA and TDMA in cellular mobile radio applications. IEEE Transactions on Vehicular Technology, 42(3), 357–364.

    Article  Google Scholar 

  4. Viterbi, A. J., Viterbi, A. M., Gilhousen, K. S., & Zehavi, E. (1994). Soft handoff extends CDMA cell coverage and increases reverse link capacity. IEEE Journal on Selected Areas in Communicatons, 12(8), 1281–1288.

    Article  Google Scholar 

  5. Holma, H., & Toskala, A. (2000). WCDMA for UMTS. John Wiley & Sons.

  6. Wong, D., & Lim, T. J. (1997). Soft handoffs in CDMA mobile systems. IEEE Personal Communications, 4(6), 6–17.

    Article  Google Scholar 

  7. Hanly, S. V. (1995). An algorithm for combined cell-site selection and power control to maximize cellular spread-spectrum capacity. IEEE Journal on Selected Areas in Communications, 13(7), 1332–1340.

    Article  Google Scholar 

  8. Yates, R. D., & Huang, C. Y. (1995). Integrated power control and base station assignment. IEEE Transactions on Vehicular Technology, 44(3), 638–644.

    Article  Google Scholar 

  9. Papavassiliou, S., & Tassiulas, L. (1998). Improving the capacity in wireless networks through integrated channel base station and power assignment. IEEE Transactions on Vehicular Technology, 47(2), 417–427.

    Article  Google Scholar 

  10. Rashid-Farrokhi, F., Tassiulas, L., & Liu, K. J. R. (1998). Joint optimal power control and beamforming in wireless networks using antenna arrays. IEEE Transactions on Communications, 46(10), 1313–1324.

    Article  Google Scholar 

  11. Gudmundson, M. (1991). Analysis of handover algorithms. In Proceedings of VTC ’91 (pp. 537–542). St. Louis, MO.

  12. Vijayan, R., & Holtzman, J. M. (1993). A model for analyzing handoff algorithms. IEEE Transactions on Vehicular Technology, 42(3), 351–356.

    Article  Google Scholar 

  13. Zhang, N., & Holtzman, J. M. (1996). Analysis of handoff algorithms using both absolute and relative measurements. IEEE Transactions on Vehicular Technology, 45(1), 174–179.

    Article  Google Scholar 

  14. Asawa, M., & Stark, W. E. (1996). Optimal scheduling of handoffs in cellular networks. IEEE-ACM Transactions on Networking, 4(3), 428–441.

    Article  Google Scholar 

  15. Veeravalli, V. V., & Kelly, O. E. (1997). A locally optimal handoff algorithm for cellular communications. IEEE Transactions on Vehicular Technology, 46(3), 603–609.

    Article  Google Scholar 

  16. Akar, M., & Mitra, U. (2001). Variations on optimal and suboptimal handoff control for wireless communication systems. IEEE Journal in Selected Areas of Communications, 19(6), 1173–1185.

    Article  Google Scholar 

  17. Su, S.-L., Chen, J.-Y., & Huang, J.-H. (1996). Performance analysis of soft handoff in CDMA systems. IEEE Journal on Selected Areas in Communications, 14(9), 1762–1769.

    Article  Google Scholar 

  18. Kwon, J. K., & Sung, D. K. (1997). Soft handoff modeling in CDMA cellular systems. In Proceedings of IEEE Vehicular Technology Conference (pp. 1548–1551). Phoenix, AZ.

  19. Lee, C.-C., & Steele, R. (1998). Effect of soft and softer handoffs on CDMA system capacity. IEEE Transactions on Vehicular Technology 47(3), 830–841.

    Article  Google Scholar 

  20. Kim, D. K., & Sung, D. K. (1999). Characterization of soft handoff in CDMA systems. IEEE Transactions on Vehicular Technology, 48(4), 1195–1202.

    Article  Google Scholar 

  21. Chheda, A. (1999). A performance comparison of the CDMA IS-95B and IS-95A soft handoff algorithms. In Proceedings of IEEE Vehicular Technology Conference (pp. 1407–1412). Houston, TX.

  22. Kim, J. Y., & Stüber, G. L. (2002). CDMA soft handoff analysis in the presence of power control error and shadowing correlation. IEEE Transactions on Wireless Communications, 1(2), 245–255.

    Article  Google Scholar 

  23. Wu, J., Affes, S., & Mermelstein, P. (2003). Forward-link soft-handoff in CDMA with multiple-antenna selection and fast joint power control. IEEE Transactions on Wireless Communications, 2(3), 459–471.

    Article  Google Scholar 

  24. Avidor, D., Hegde, N., & Mukherjee, S. (2004). On the impact of the soft handoff threshold and the maximum size of the active group on resource allocation and outage probability in the UMTS system. IEEE Transactions on Wireless Communications 3(2), 565–577.

    Article  Google Scholar 

  25. Zhang, N., & Holtzman, J. M. (1998). Analysis of a CDMA soft-handoff algorithm. IEEE Transactions on Vehicular Technology, 47(2), 710–714.

    Article  Google Scholar 

  26. Akar, M., & Mitra, U. (2003). Soft handoff algorithms for CDMA cellular networks. IEEE Transactions on Wireless Communications, 2(6), 1259–1274.

    Article  Google Scholar 

  27. Prakash, R., & Veeravalli, V. V. (2003). Locally optimal soft handoff algorithms. IEEE Transactions on Vehicular Technology, 52(2), 347–356.

    Article  Google Scholar 

  28. Hashem, B., & Strat, E. L. (2000). On the balancing of the base stations transmitted powers during soft handoff in cellular CDMA systems. In Proceedings of the IEEE International Conference on Communications (pp. 1497–1501).

  29. Hamabe, K. (2000). Adjustment loop transmit power control␣during soft handover in CDMA cellular systems. In Proceedings of the Vehicular Technology Conference (pp. 1519–1523).

  30. Furukawa, H., Harnage, K., & Ushirokawa, A. (2000). SSDT-site selection diversity transmission power control for CDMA forward link. IEEE Journal on Selected Areas in Communications, 18(8), 1546–1554.

    Article  Google Scholar 

  31. Daraiseh, A.-G.A., & Landolsi, M. (1998). Optimized CDMA forward link power allocation during soft handoff. In Proceedings of the Vehicular Technology Conference (pp. 1548–1552).

  32. Blaise, F., Elicegui, L., Goeusse, F., & Vivier, G. (2002). Power control algorithms for soft handoff users in UMTS. In Proceedings of the Vehicular Technology Conference (pp.␣1110–1114).

  33. Chen, Y., & Cuthbert, L. (2003). Optimized downlink transmit power control during soft handover in WCDMA systems. In Proceedings of the Conference on Wireless Communications and Networking (pp. 547–551).

  34.  3GPP, “Technical specification group radio access network: Radio resource management strategies,” 3G TS 25.922, Version 3.6.0.

  35. Gudmundson, M. (1991). Correlation model for shadow fading in mobile radio systems. Electronic Letters, 27(23), 2145–2146.

    Article  Google Scholar 

  36. Bertsekas, D. P. (1995). Dynamic programming and optimal control. Belmont, MA: Athena.

    MATH  Google Scholar 

  37. TIA/EIA/IS-95-A. (1995). Mobile station-base station compatibility standard for dual-mode wideband spread spectrum cellular system. Telecommunications Industry Association.

  38. Bertsekas, D. P. (1999). Nonlinear programming. Belmont, MA: Athena.

    MATH  Google Scholar 

  39. Stüber, G. L. (1996). Principles of mobile communication. Boston, MA: Kluwer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Akar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akar, M. Integrated power and handoff control for next generation wireless networks. Wireless Netw 15, 691–708 (2009). https://doi.org/10.1007/s11276-007-0069-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-007-0069-y

Keywords

Navigation