Skip to main content
Log in

An efficient delay constrained scheduling scheme for IEEE 802.16 networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, we propose a simple yet efficient delay-constrained scheduling scheme for IEEE 802.16 networks. The proposed scheduling scheme not only can satisfy delay constraints of different service types by manipulating a simple operation parameter but also can achieve a good fairness performance. An analytical model is developed to evaluate the performance in terms of inter-service time, average queue length, and mean waiting time, and is verified through extensive simulations. Furthermore, an implementation procedure of the proposed scheme is given, which reflects the scheme’s good features of the fast re-configurability and adaptability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. IEEE 802.16-2001 (April 2002). IEEE Standard for local and metropolitan access networks part 16: Air Interface for Fixed Broadband Wireless Access Systems.

  2. IEEE 802.16aM-2003 (April 2003). IEEE Standard for local and metropolitan access network part 16: Air Interface for Fixed Broadband Wireless Access Systems—Amendment 2: Medium Access Control Modifications and Additional Physical Layer Specifications for 2–11 GHz.

  3. Lee, H., Kwon, T., & Cho, D. H. (2005). An enhanced uplink scheduling algorithm based on voice activity for VoIP services in IEEE 802.16d/e System. IEEE Communications Letters, 9, 691–693.

    Article  Google Scholar 

  4. Chen, J., Jiao, W., & Guo, Q. (2005). An integrated QoS control architecture of IEEE 802.16 broadband wireless access systems. Proc. Globecom’05 (Vol. 6, pp. 3330–3335).

  5. Kitti, W., & Aura, G. (2003). Packet scheduling for QoS support in IEEE 802.16 broadband wireless access systems. International Journal of Communication Systems 16, 81–96.

    Article  MATH  Google Scholar 

  6. Liu, Q., Zhou, S., & Giannakis, G. B. (2005). Cross-layer scheduling with prescribed QoS guarantees in adaptive wireless networks. IEEE JSAC, 23, 1056–1066.

    Google Scholar 

  7. Liu, X., Chong, E. K. P., & Shroff, N. B. (2003). A framework for opportunistic scheduling in wireless networks. International Journal of Computer and Telecommunication Networking, 41, 451–474.

    MATH  Google Scholar 

  8. Mehrjoo, M., Dianati, M., Shen, X., & Naik, K. (2006). Opportunistic fair scheduling for the downlink of IEEE 802.16 wireless metropolitan area networks. Proc. QShine’06.

  9. Xu, L., Shen, X., & Mark, J. W. (2004). Dynamic fair scheduling with QoS constraints in multimedia wideband CDMA cellular networks. IEEE Transaction on Wireless Communications, 3, 60–73.

    Article  Google Scholar 

  10. Park, D., Seo, H., Kwon, H., & Lee, B. G. (2005). Wireless packet scheduling based on the cumulative distribution function of user transmission rates. IEEE Transaction on Communications, 53, 1919–1929.

    Article  Google Scholar 

  11. Jalali, A., Padovani, R., & Pankaj, R. (2000). Data throughput of CDMA-HDR a high efficiency-high data rate personal communication wireless system. Proc. IEEE Veh. Technol. Conf. (pp. 1854–1858).

  12. Hushner, H. J. (2002). Asymptotic properties of proportional-Fair Sharing Algorithm. Proc. Allerton Conf 2002. Champaign-Urbana, IL: University of Illinois Press.

  13. Choi, J.-G., & Bahk, S. (2004). Cell throughput analysis of the proportional fair scheduling policy. Proc. Networking 2004 (pp. 247–258).

  14. Liu, Q., Wang, X., & Giannakis, B. B. (2006). A cross-layer scheduling algorithm with QoS support in wireless networks. IEEE Transaction on Vehicular Technology, 55, 839–847.

    Article  Google Scholar 

  15. Stolyar, A. L., & Ramanan, K. (2001). Largest weighted delay first scheduling: Large deviations and optimality. The Annals of Applied Probability, 11(1), 1–48.

    Article  MATH  MathSciNet  Google Scholar 

  16. Andrews, M., Kumaran, K., Ramanan, K., Stolyar, A., Whiting, P., & Vijayakumar, R. (2001). Providing quality of service over a shared wireless link. IEEE Communication Magazine, 39, 150–154.

    Article  Google Scholar 

  17. Shakkottai, S., & Stolyar, A. L. (2001). Scheduling algorithms for a mixture of real-time and non-real-time data in HDR. Proc. International Teletraffic Congress (ITC) (pp. 793–804).

  18. Rhee, J. H., Holtzman, J. M., & Kim, D. K. (2004). Performance analysis of the adaptive EXP/PF channel scheduler in an AMC/TDM system. IEEE Communications Letters, 8, 497–499.

    Article  Google Scholar 

  19. Bolch, G., Greiner, S., de Meer, H., & Trivehi, K. S. (2005). Queueing networks and markov chain: Modeling and performance evaluation with computer science applications. USA: John Wiley & Sons.

    Google Scholar 

  20. Jain, R., Chiu, D., & Hawe, W. (1984). A quantitative measure of fairness and discrimination for resource allocation in shared computer system. DEC Technical Report 301.

  21. Dianati, M., Shen, X., & Naik, S. (2005). A new fairness index for radio resource allocation in wireless networks. Proc. WCNC (pp. 712–717).

Download references

Acknowledgement

This work is partially supported by a Strategic Research Grant from the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fen Hou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, F., Ho, PH. & Shen, X.(. An efficient delay constrained scheduling scheme for IEEE 802.16 networks. Wireless Netw 15, 831–844 (2009). https://doi.org/10.1007/s11276-007-0077-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-007-0077-y

Keywords

Navigation