Skip to main content
Log in

DSMeM Streaming: distributed system to mitigate the effects of performance anomaly and user mobility on IEEE 802.11 WLANs

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

On IEEE 802.11 wireless LANs (WLAN) the clients have control over the handoff procedure; a client decides the best AP (access point) to be associated to and when and where to change its association to a new AP. This simple handoff management technique can have negative effects for both static and mobile clients of the same cell, since some wireless clients remain associated with their current AP even when a better AP is reachable. Combined with handoff latencies, this mobility method can have a negative effect on various services with severe restrictions regarding delivery rate and delay. In this paper, a distributed and transparent system that monitors channel conditions, manages user data based on its knowledge and induces client handoffs when a better AP is reachable, is presented. One of the strongest points of the proposed solution is that it can work in currently deployed IEEE 802.11 WLANs without the server, clients or APs having to introduce new software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. ANSI/IEEE Standard 802.11. (2003). LAN MAN Standards Committee of the IEEE Computer Society.

  2. Leary, J., & Roshan, P. (2004). Wireless LAN fundamentals. Cisco Press.

  3. Cranley, N., & Davis, M. (2005). Performance evaluation of video streaming with background traffic over IEEE 802.11 WLAN networks. In Proceedings ACM WMuNeP’05.

  4. Heusse, M., Rousseau, F., Berger-Sabbatel, G., & Duda, A. (2003). Performance anomaly of 802.11b. In Proceedings IEEE Infocom’03.

  5. Kotz, D., & Esseien, K. (2005). Analysis of a campus-wide wireless network, wireless networks 11. Springer Science and Business Media.

  6. Mishra, A., Shin, M., & Arbaugh, W. (2003). An empirical analysis of the IEEE 802.11 MAC layer handoff process. ACM SIGCOMM Computer Communication Review, 33.

  7. Velayos, H., & Karlsson, G. (2004). Techniques to reduce IEEE 802.11b handoff time. In Proceedings IEEE ICC’04.

  8. Mhatre, V., & Papagiannaki, K. (2006). Using smart triggers for improved user performance in 802.11 wireless networks. In Proceedings ACM Mobysis’06.

  9. Shin, S., Forte, A. G., Singh, A., & Schulzrinne, H. (2004). Reducing MAC layer handoff latency in IEEE 802.11 wireless LANs. In Proceedings ACM MobiWAC’04.

  10. Ramani, I., & Savage, S. (2005). SyncScan: Practical fast handoff for 802.11 infrastructure networks. In Proceedings IEEE Infocom’05.

  11. Liao, Y., & Gao, L. (2006). Practical schemes for smooth MAC layer handoff in 802.11 wireless networks. In Proceedings IEEE WoWMoM’06.

  12. Pack, S., & Choi, Y. (2004). Fast handoff scheme based on mobility prediction in public wireless LAN systems. IEEE Proceeding—Communications, 151.

  13. Kassab, M., Belghith, A., Bonnin, J., & Sassi, S. (2005). Fast preauthentication based on proactive key distribution for 802.11 infrastructure networks. In Proceedings ACM WMuNeP’05.

  14. Yang, G., Chen, L., Sun, T., Gerla, M., & Sanadidi, M. (2006). Smooth and efficient real-time video transport in presence of wireless networks, ACM transactions on multimedia computing, communications, and applications (TOMCCAP) 2.

  15. Razafindralambo, T., Guerin-lassous, I., Iannone, L., & Fdida, S. (2006). Dynamic packet aggregation to solve performance anomaly in 802.11 wireless networks. In Proceedings IEEE/ACM MSWiM’06.

  16. Koucheryavy, Y., Moltachanov, D., & Harju, J. (2003). Performance evaluation of live video streaming in 802.11b WLAN environment under different load conditions. Lecture Notes in Computer Science, 2889.

  17. Cranley, N., & Davis, M. (2005). Performance evaluation of video streaming with background traffic over IEEE 802.11 WLAN networks. In Proceedings ACM WMuNeP’05.

  18. Bai, G., & Williamsom, C. (2004). The effects of mobility on wireless media streaming performance. In Proceedings WNET’04.

  19. Vilas, M., Pañeda, X. G., Melendi, D., García, R., & García, V. (2006). Influence of effective handoff latency on live streaming services. In Proceedings CITA’06.

  20. Yang, D., Lee, T., Jan, K., Chang, J., & Sunghyun, C. (2006). Performance enhancement of multi-rate IEEE 802.11 WLANs with geographically-scattered stations. IEEE Transactions on Mobile Computing, 5.

  21. Zenel, B. A. (1999). A general purpose proxy filtering mechanism for the mobile environment. ACM Wireless Networks, 5.

  22. Bruneo, D., Villari, M., Zaia, A., & Puliafito, A. (2003). VoD services for mobile wireless devices. In Proceedings IEEE ISCC’03.

  23. Bellavista, P., & Corradi, A. (2004). A QoS management middleware based on mobility prediction for multimedia service continuity in the wireless internet. In Proceedings ISCC’04.

  24. Bellavista, P., Corradi, A., & Giannelli, C. (2005). Mobile proxies for proactive buffering in wireless internet multimedia streaming. In Proceedings IEEE ICDCS’05.

  25. Kotz, D., & Esseien, K. (2005). Analysis of a campus-wide wireless network, wireless networks 11. Springer Science and Business Media.

  26. Vilas, M., Pañeda, X. G., Melendi, D., García, R., & García, V. (2006). Signalling management to reduce roaming effects over streaming services, EUROMICRO SEAA’06.

  27. Li, M., Li, F., Claypool, M., & Kinicki, R. (2005). Weather forecasting—predicting performance for streaming video over wireless LANs. In Proceedings ACM NOSSDAV’05.

  28. RTSP Proxy KIT. From http://sourceforge.net/projects/rtsp. Retrieved 29 March 2006.

  29. Yeo, J., Youssef, M., Henderson, T., & Agrawala, A. (2005). An accurate technique for measuring the wireless side of wireless networks. In Proceedings WiTMeMo’05.

  30. Davis, M. (2004). Wireless traffic probe for radio resource management and QoS provisioning in IEEE 802.11 WLANs. In Proceedings ACM MSWiM’04.

  31. DNAT with NetFilter. From http://linux-ip.net/html/nat-dnat.html. Last retrieved 12 October 2006.

  32. Policy-based routing. From http://www.cisco.com. Last retrieved 12 October 2006.

  33. Linux advanced routing & traffic control. http://lartc.org/.

  34. Cisco DOT11 association MIB. From http://www.cisco.com. Last retrieved 29 March 2006.

  35. Malinen, J. HostAP driver. From http://hostap.epitest.fi/. Retrieved 12 August 2006.

  36. Airjack. From http://sourceforge.net/projects/airjack. Retrieved 12 March 2006.

  37. ANSI/IEEE standard 802.11g. (2003). LAN MAN standards committee of the IEEE computer society.

  38. IEEE 802.11 task group E. From http://grouper.ieee.org/groups/802/11/Reports/tge_update.htm. Retrieved 12 October 2006.

  39. Jabri, I., Soudani, A., Krommenacker, N., & Divaux, T. (2006). An approach for load distribution and resource sharing in IEEE 802.11 Networks. In Proceedings ICWMC’06.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Vilas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vilas, M., Sanchez, R., Pañeda, X.G. et al. DSMeM Streaming: distributed system to mitigate the effects of performance anomaly and user mobility on IEEE 802.11 WLANs. Wireless Netw 16, 95–112 (2010). https://doi.org/10.1007/s11276-008-0117-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-008-0117-2

Keywords

Navigation