Skip to main content
Log in

Connectivity properties of large-scale sensor networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In wireless sensor networks, both nodes and links are prone to failures. In this paper we study connectivity properties of large-scale wireless sensor networks and discuss their implicit effect on routing algorithms and network reliability. We assume a network model of n sensors which are distributed randomly over a field based on a given distribution function. The sensors may be unreliable with a probability distribution, which possibly depends on n and the location of sensors. Two active sensor nodes are connected with probability p e (n) if they are within communication range of each other. We prove a general result relating unreliable sensor networks to reliable networks. We investigate different graph theoretic properties of sensor networks such as k-connectivity and the existence of the giant component. While connectivity (i.e. k = 1) insures that all nodes can communicate with each other, k-connectivity for k > 1 is required for multi-path routing. We analyze the average shortest path of the k paths from a node in the sensing field back to a base station. It is found that the lengths of these multiple paths in a k-connected network are all close to the shortest path. These results are shown through graph theoretical derivations and are also verified through simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002, August). A survey on sensor networks. IEEE Communications Magazine, 40, 102–114.

    Google Scholar 

  2. Akkaya, K., & Younis, M. (2004). A survey of routing protocols in wireless sensor networks. Elsevier Ad Hoc Network Journal (to appear).

  3. Eschenauer, L., & Gligor, V. D. (2002, November). A key management scheme for distributed sensor networks. In The 9th ACM conference on computer and communication security (pp. 41–47).

  4. Chan, H., Perrig, A., & Song, D. (2003). random key predistribution schemes for sensor networks. In 2003 IEEE symposium on research in security and privacy (pp. 197–213).

  5. Bollobás, B. (2001). Random graphs 2nd (ed.). Cambridge: Cambridge University Press.

  6. Meester, R., & Roy, R. (1996). Continuum percolation. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  7. Penrose, M. D., & Pistztora, A. (1996). Large deviations for discrete and continous percolation. Advances in Applied Probability, 28, 29–52.

    Article  MATH  MathSciNet  Google Scholar 

  8. Penrose, M. D. (1993). On the spread-out limit for bond and continuum percolation. Annals of Applied Probability, 3(1), 253–276.

    Article  MATH  MathSciNet  Google Scholar 

  9. Penrose, M. D. (1997). The longest edge of the random minimal spanning tree. The Annals of Applied Probability, 6, 340–361.

    MathSciNet  Google Scholar 

  10. Penrose, M. D. (1999). On k-connectivity for a geometric random graph. Random Structures and Algorithms, 15, 145–164.

    Article  MATH  MathSciNet  Google Scholar 

  11. Gupta, P. & Kumar, P. R. (1998). Critical power for asymptotic connectivity in wireless networks. In W. M. McEneany, G. Yin, & Q. Zhang (Eds.), Stochastic analysis, control, optimization and applications: A volume in honor of W. H. Fleming (pp. 547–566). Boston, MA: Birkhauser.

  12. Gupta, P. & Kumar, P. R. (2000). The capacity of wireless networks. IEEE Transactions on Information Theory, 46(2), 388–404.

    Article  MATH  MathSciNet  Google Scholar 

  13. Xue, F., & Kumar, P. R. (2004). The number of neighbors needed for connectivity of wireless networks. Wireless Networks, 10(2),169–181.

    Article  Google Scholar 

  14. Booth, L., Bruck, J., Franceschetti, M., & Meester, R. (2003, May). Covering algorithms, continuum percolation and the geometry of wireless networks. Annals of Applied Probability, 13.

  15. Franceschetti, M., Booth, L., Cook, M., Bruck, J., & Meester, R. (2005). Continuum percolation with unreliable and spread out connections. Journal of Statistical Physics, 118(3/4), 721–734.

    Article  MATH  MathSciNet  Google Scholar 

  16. Shakkottai, S., Srikant, R., & Shroff, N. (2003, April). Unreliable sensor grids: Coverage, connectivity and diameter. In The proceedings of IEEE INFOCOM’03, San Francisco, CA.

  17. Li, X. Y., Wan, P., Wang, Y., & Yi, C. W. (2003). Fault tolerant deployment and topology control in wireless networks. ACM symposium on mobile ad hoc networking and computing, MOBIHOC.

  18. Wan P., & Yi, C. W. (2004). Asymptotic critical transmission radius and critical neighbor number for k-connectivity in wireless ad hoc networks. ACM symposium on mobile ad hoc networking and computing, mobiHoc.

  19. Dousse, O., Thiran, P., & Hasler, M. (2002). Connectivity in ad-hoc and hybrid networks. IEEE Infocom.

  20. Dousse, O. & Thiran, P. (2004). Connectivity vs capacity in dense ad hoc networks. IEEE Infocom.

  21. Dousse, O., Bacelli, F., & Thiran, P. (2005). Impact of interferences on connectivity in ad hoc networks. IEEE/ACM Transactions on Networking, 13, 425–436.

    Article  Google Scholar 

  22. Haas, Z., Halpern, J., & Li, L. (2002). Gossip-based ad hoc routing. IEEE Infocom.

  23. Ganesan, D., Govindan, R., Shenker, S., & Estrin, D. (2002). Highly-resilient, energy-efficient multipath routing in wireless sensor networks. Mobile computing and communications review (MC2R ’02).

  24. Nasipuri, A., & Das, S. R. (1999). On-demand multipath routing for mobile ad hoc networks. In Proceedings of the IEEE international conference on computer communication and networks (ICCCN’99).

  25. Ayanoglu, E., Gitlin, C., & Mazo, J. (1993). Diversity coding for transparent self-healing and fault-tolerant communication networks. IEEE Transactions on Communications, 41(11), 1677–1686.

    Article  Google Scholar 

  26. Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002, October). An application specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1, 660–670.

    Article  Google Scholar 

  27. Intanagonwiwat, C. Govindan, R., & Estrin, D. (2000). Directed diffusion: A scalable and robust communication paradigm for sensor networks. Mobile Computing and Networking, 56–67

  28. Manjeshwar, A. & Agrawal, D. P. (2002). APTEEN: A hybrid protocol for efficient routing and comprehensive information retrieval in wireless sensor networks. In Proceedings of the international parallel and distributed processing symposium.

  29. Braginsky, D., & Estrin, D. (2002). Rumor routing algorithm for sensor networks. ACM international workshop on wireless sensor networks and applications.

  30. Karp, B., & Hung, H. T. (2000). Gpsr: Greedy perimenter stateless routing for wireless network. In Proceedings of the 6th annual ACM/IEEE international conference on mobile computing and networking.

  31. Penrose, M. (2003). Random geometric graphs. Oxford University Press.

  32. Penrose, M. D. (1999). A strong law for the longest edge of the random minimal spanning tree. The Annals of Applied Probability, 27, 246–260.

    MATH  MathSciNet  Google Scholar 

  33. Janson, S., Lucszak, T., & Rucinski, A. (2000). Random graphs. Wiley.

  34. Heinzelman, W., Chandrakasan, A., & Balakrishnan, H. (2000, January). Energy-efficient communication protocol for wireless sensor networks. In Proceedings of the Hawaii international conference system sciences.

Download references

Acknowledgements

This work is supported by National Science Foundation under grants CCF-0728970 and CCF-0728772.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Pishro-Nik.

Appendix

Appendix

1.1 Proofs

1.1.1 Proof of Theorem 2

Proof

Define \(\omega(n):=n {\pi}r^{2}(n) p_e(n)-\ln(n),\) thus \(\pi r^{2}(n)=\frac{\ln n+ \omega(n)} {n p_{e}(n)}.\) Let \( S_1=\overline{S(\overline{O},1-2r(n))}.\) We now obtain

$$ \begin{aligned} EZ_n & =n\int \limits_{S_0} \left(1-\nu(B(\overline{X},r(n)))p_{e}(n)\right)^{n-1}dm(\overline{X}) \\ & \geq n\int \limits_{S_1} \left(1-\nu(B(\overline{X},r(n)))p_{e}(n)\right)^{n-1}dm(\overline{X})\\ & = n \int \limits_{S_1} \left(1-\frac{\ln n+ \omega(n)} {n}\right)^{n-1}dm(\overline{X})\\ & = n \left(1-\frac{\ln n+\omega(n)} {n}\right)^{n-1} m(S_1)\\ & =e^{-\omega(n)}(1+o(1)). \end{aligned}.$$
(46)

Therefore, we conclude that \(\lim \limits_{n\rightarrow\infty} EZ_n(r(n))= \infty\) if \(\lim \limits_{n\rightarrow\infty} \omega(n)=-\infty.\) Moreover, \(\lim \limits_{n\rightarrow\infty} EZ_n(r(n))>0\) if \(\lim \limits_{n\rightarrow\infty} \omega(n)\le\infty.\) Now assume that \(\lim \limits_{n\rightarrow\infty} \omega(n)>-\infty.\) Let Y 3,n be the number of isolated vertices in S 3. Then we get

$$ \begin{aligned} EY_{3,n}\leq&n r^{2}(n) \left(1-\frac{\pi r^{2}(n)} {4}p_{e}(n)\right)^{n-1}\\ \leq&n r^{2}(n) e^{-\frac{\pi r^{2}(n)} {4}p_{e}(n)(n-1)}. \end{aligned} $$
(47)

Using \(p_e(n)\geq \frac{c} {\ln n}\) and \(\pi r^{2}(n)=\frac{\ln n+ \omega(n)} {n p_{e}(n)},\) we conclude

$$ EY_{3,n}=O\left (\frac{\ln n(\ln n+\omega(n))e^{-\omega(n)/4}} {n^{\frac{1}{4}}}\right)=o(1). $$
(48)

Therefore, there is no isolated vertex in S 3 with high probability. Next, let Y 2,n be the number of isolated vertices in S 2. Then

$$ EY_{2,n}=n\int \limits_{S_2} \left(1-\nu(B(\overline{X},r(n)))p_{e}(n)\right)^{n-1}dm(\overline{X}) $$
(49)

Using the Laplace method for integrals and Lemma 1, it can be shown that

$$ EY_{2,n}=O\left(\frac{e^{-\frac{\omega(n)} {2}}} {r(n)p_e(n) \sqrt{n}}\right) $$
(50)

Using \(p_e(n)\geq \frac{c} {\ln n}\) and \(\pi r^{2}(n)=\frac{\ln n+ \omega(n)} {n p_{e}(n)},\) we conclude

$$ EY_{2,n}=O\left (\frac{e^{-\frac{\omega(n)} {2}}}{\sqrt{\left(c+\frac{c \omega(n)} {\ln(n)}\right)}}\right).$$
(51)

Thus if \(\lim \limits_{n\rightarrow\infty} \omega(n)=\infty\) then Y 2,n  = 0 asymptotically almost surely. Moreover, if \(0\le\lim \limits_{n\rightarrow\infty} \omega(n)\le\infty\) then Y 2,n is finite asymptotically almost surely. Combining with (46) we conclude the theorem.□

1.1.2 Proof of Theorem 3

Proof

By Theorem 2, when \(\lim \limits_{n\rightarrow \infty} \big[n \pi r^{2}(n) p_e(n)- \ln(n)\big]=\infty,\) we have \(\lim\limits_{n\rightarrow\infty} EZ_n(r(n))=0.\) Thus, by Markov’s inequality there is no isolated vertex with high probability. Then, by Theorem 1 the graph is connected asymptotically almost surely. Hence, we focus on the proof of the other direction. That is if \(0 < \lim \limits_{n\rightarrow \infty} \big[n \pi r^{2}(n) p_e(n)- \ln(n)\big] < \infty\) (or equivalently \(0 < \lim\limits_{n\rightarrow\infty} EZ_n(r(n)) < \infty\)), then there exists δ > 0 such that \(\liminf \limits_{n\rightarrow\infty} p^{disc}_{n}> \delta > 0, \) where \(p^{disc}_{n}\) is the probability that g n is disconnected. The proof is as follows. Let A n,j be the event that the vertex v j is isolated. Then we want to prove

$$ \limsup \limits_{n \rightarrow \infty} \hbox{Pr}\left\{\bigcap_{i=1}^{n}\overline{A_{n,i}}\right\} \le 1. $$
(52)

To prove the above, we use Lemma 2. Let \(\Updelta_n=\sum \limits_{i=1}^{n} \sum \limits_{j\neq i} \hbox{Pr}\{A_{n,i} \cap A_{n,j}\}.\) We show that under the condition \(0\le\mu<\infty,\) we have \(\lim \limits_{n \rightarrow \infty} \Updelta_n= \Updelta<\infty.\) Thus by applying Lemma 2 we conclude the theorem. It remains to prove Δ < ∞. We note that

$$ \begin{aligned} \Updelta_n \leq& n(n-1)\int \limits_{S_0\times S_0} \left(1-\nu(B(\overline{X},r(n)))p_{e}(n)\right.\\ &- \nu(B(\overline{X},r(n)))p_{e}(n)\\ &+ \nu(B(\overline{X},r(n))) \cap B(\overline{Y},r(n)))p_{e}^2(n) \left. \right)^{n-2}d m(\overline{X})\times m(\overline{Y}) \end{aligned} $$
(53)

We have \(S_0\times S_0=(S_1\times S_1)\cup(S_0\times S_0 \setminus S_1\times S_1).\) It suffices to show that the integral over the set \(S_1\times S_1\) and \(S_0\times S_0 \setminus S_1\times S_1\) is finite. Let \(\Updelta_n^{1}\) and \(\Updelta_n^{2}\) be the two integrals respectively. For example, for S 1 × S 1 we have

$$ \begin{aligned} \Updelta_n^{1} & = n(n-1)\int \limits_{S_1\times S_1} \left(1-\nu(B(\overline{X},r(n)))p_{e}(n)\right.\\ & \quad -\nu(B(\overline{X},r(n)))p_{e}(n) \\ & \quad \left.+\nu(B(\overline{X},r(n))) \cap B(\overline{Y},r(n)))p_{e}^2(n) \right)^{n-1}d(m\times m)\\ & = n(n-1)\int \limits_{S_1\times S_1} \left(1-\frac{\ln n+ \omega(n)} {n}\right.\\ & \quad \left.-\frac{\ln n+ \omega(n)} {n}+\nu(B(\overline{X},r(n))) \cap B(\overline{Y},r(n)))p_{e}^2(n) \right)^{n-1}d(m\times m)\\ & \leq e^{-2\omega(n)}\int \limits_{S_1\times S_1} e^{\nu(B(\overline{X},r(n))) \cap B(\overline{Y},r(n)))p_{e}^2(n)(n-1)}d(m\times m)\\ & = e^{-2\omega(n)}\int \limits_{S_1} e^{\nu(B(\overline{O},r(n))) \cap B(\overline{Y},r(n)))p_{e}^2(n)(n-1)}dm(Y)\\ & = e^{-2\omega(n)}\int \limits_{S_1\setminus \quad B(\overline{O},2r(n))} e^{\nu(B(\overline{O},r(n))) \cap B(\overline{Y},r(n)))p_{e}^2(n)(n-1)}dm(Y)\\ & \quad + e^{-2\omega(n)}\int \limits_{ B(\overline{O},2r(n))} e^{\nu(B(\overline{O},r(n))) \cap B(\overline{Y},r(n)))p_{e}^2(n)(n-1)}dm(Y)\\ & = e^{-2\omega(n)}+e^{-2\omega(n)} \int \limits_{ B(\overline{O},2r(n))} e^{\nu(B(\overline{O},r(n))) \cap B(\overline{Y},r(n)))p_{e}^2(n)(n-1)}dm(Y). \end{aligned} $$
(54)

Using the Laplace method for integrals and Lemma 1 we obtain

$$ \Updelta_n^{1} = e^{-2\omega(n)}+O \left(\frac{e^{-(2-p_e(n)) \omega(n)}} {n^{(2-p_e(n))} p_e(n)^4 r^2(n)}\right) $$
(55)

Using \(p_e(n)\geq \frac{c} {\ln n}\) and \(0<\lim \limits_{n\rightarrow \infty} \omega(n)<\infty,\) we conclude

$$ \lim \limits_{n \rightarrow \infty} \Updelta_n^{1} <\infty. $$
(56)

Similarly, we can show \(\lim \limits_{n \rightarrow \infty} \Updelta_n^{2} <\infty. \) Therefore, \(\lim \limits_{n \rightarrow \infty} \Updelta_n=\Updelta<\infty,\) which concludes the theorem.□

1.1.3 Proof of Theorem 6

By a simple coupling argument, we find that the probability of having at least one isolated vertex is a decreasing function of r(n). If α < 1, then for any constant c and large enough n, we have

$$ r(n)<\sqrt{\frac{\ln n+ c} {\pi n p_{e}(n)}}. $$
(57)

Thus, by Theorem 4, the probability that g = g(nrp e ) has at least one isolated vertex is asymptotically greater than or equal to \(e^{-e^{-c}}\) for any real number c. Thus, if α < 1, the graph g = g(nrp e ) has an isolated vertex with high probability, and thus it is not k-connected for any positive integer k.

Now, by Theorem 1, it suffices to prove that if α > 1, for any fixed \(k\in \{0,1,2,\ldots\},\) g(n, r, p e ) does not have any vertices of degree k with high probability. Let α > 1 and Y j,k,n be the number of vertices of degree k in S j , for j = 1, 2, 3. It suffices to show Y j,k,n  = 0 asymptotically almost surely for j = 1, 2, 3.

We first consider Y 1,k,n . We have

$$ \begin{aligned} EY_{1,k,n}=& n\int \limits_{S_1} \binom{n}{k} [\nu(B(\overline{X},r(n)))p_{e}(n)]^k\\ &\left(1-\nu(B(\overline{X},r(n)))p_{e}(n)\right)^{n-k-1}dm(\overline{X}). \end{aligned} $$
(58)

But for \(\overline{X}\in S_1,\) we have \(\nu(B(\overline{X},r(n)))=\pi r^2(n).\) Thus

$$ EY_{1,k,n}= O\left( \frac{(\ln n)^k} {n^{\alpha-1}}\right)=o(1). $$
(59)

Therefore, Y 1,k,n  = 0 asymptotically almost surely. We now consider Y 2,k,n . We have

$$ \begin{aligned} EY_{2,k,n}=& n\int \limits_{S_2} \binom{n}{k} [\nu(B(\overline{X},r(n)))p_{e}(n)]^k\\ &\left(1-\nu(B(\overline{X},r(n)))p_{e}(n)\right)^{n-k-1}dm(\overline{X}). \end{aligned} $$
(60)

Using the Laplace method for integrals, Lemma 1, and \(p_e(n)\geq \frac{c} {\ln n}\) we can write

$$ EY_{2,k,n}=O\left(\frac{(\ln n)^{2k+1}} {n^{\frac{\alpha}{2}-\frac{1}{2}-o(1)}}\right)=o(1) $$
(61)

This implies Y 2,k,n  = 0 asymptotically almost surely. We now prove Y 3,k,n  = 0 asymptotically almost surely. We note that

$$ \begin{aligned} EY_{3,k,n}\leq & n r^{2}(n) \binom{n}{k} (\pi r^2(n)p_e(n))^k \left(1-\frac{\pi r^{2}(n)} {4}p_{e}(n)\right)^{n-k-1}\\ \leq& n^{k+1} r^{2k+2}(n)p_e(n) e^{-\frac{\pi r^{2}(n)} {4}p_{e}(n)(n-k-1)}. \end{aligned} $$
(62)

Using \(p_e(n)\geq \frac{c} {\ln n}\) and \(\lim \limits_{n\rightarrow\infty} \left(\frac{n \pi r^2(n) p_e(n)} {\ln n} \right)=\alpha,\) we conclude

$$ EY_{3,k,n}=O\left (\frac{(\ln n)^{k+2}} {n^{\frac{1}{4}-o(1)}}\right)=o(1) $$
(63)

This implies that Y 3,k,n  = 0 asymptotically almost surely.□

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pishro-Nik, H., Chan, K. & Fekri, F. Connectivity properties of large-scale sensor networks. Wireless Netw 15, 945–964 (2009). https://doi.org/10.1007/s11276-009-0179-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-009-0179-9

Keywords

Navigation