Skip to main content
Log in

Application layer QoS optimization for multimedia transmission over cognitive radio networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In cognitive radio (CR) networks, the perceived reduction of application layer quality of service (QoS), such as multimedia distortion, by secondary users may impede the success of CR technologies. Most previous work in CR networks ignores application layer QoS. In this paper we take an integrated design approach to jointly optimize multimedia intra refreshing rate, an application layer parameter, together with access strategy, and spectrum sensing for multimedia transmission in a CR system with time varying wireless channels. Primary network usage and channel gain are modeled as a finite state Markov process. With channel sensing and channel state information errors, the system state cannot be directly observed. We formulate the QoS optimization problem as a partially observable Markov decision process (POMDP). A low complexity dynamic programming framework is presented to obtain the optimal policy. Simulation results show the effectiveness of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Mitola, J. (2000). An integrated agent architecture for software defined radio. PhD thesis.

  2. Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal of Selected Areas in Communication, 23, 201–220.

    Article  Google Scholar 

  3. Zhao, Q., & Sadler, B. M. (2007). A survey of dynamic spectrum access. IEEE Signal Processing Magazine, 24, 79–89.

    Article  Google Scholar 

  4. Zhao, Q., Tong, L., Swami, A., & Chen, Y. (2007). Decentralized cognitive MAC for opportunistic spectrum access in ad hoc networks: A POMDP framework. IEEE Journal of Selected Areas in Communication, 25, 589–600.

    Article  Google Scholar 

  5. Chen, Y., Zhao, Q., & Swami, A. (2008). Joint design and separation principle for opportunistic spectrum access in the presence of sensing errors. IEEE Transaction on Information Theory, 54, 2053–2071.

    Article  MathSciNet  Google Scholar 

  6. Ganesan, G., & Li, Y. (2007). Cooperative spectrum sensing in cognitive radio, part I: Two user networks. IEEE Transaction on Wireless Communication, 6, 2204–2213.

    Article  Google Scholar 

  7. Ganesan, G., & Li, Y. (2007). Cooperative spectrum sensing in cognitive radio—Part II: Multiuser networks. IEEE Transaction on Wireless Communication, 6, 2214–2222.

    Article  Google Scholar 

  8. Hu, W., Willkomm, D., Vlantis, G., Gerla, M., & Wolisz, A. (2007). Dynamic frequency hopping communities for efficient IEEE 802.22 operation. IEEE Communication on Magazine, 45, 80–87.

    Article  Google Scholar 

  9. Ji, Z., & Liu, K. J. R. (2007). Dynamic spectrum sharing: A game theoretical overview. IEEE Communication on Magazine, 45, 88–94.

    Article  MATH  MathSciNet  Google Scholar 

  10. Zhang, D., & Tian, Z. (2007). Adaptive games for agile spectrum access based on extended kalman filtering. IEEE Journal of Selected Topics in Signal Processing, 1, 79–90.

    Article  MATH  Google Scholar 

  11. Etkin, R., Parekh, A., & Tse, D. (2007). Spectrum sharing for unlicensed bands. IEEE Journal of Selected Areas Communication, 25, 517–528

    Article  Google Scholar 

  12. Geirhofer, S., Tong, L., & Sadler, B. M. (2007). Cognitive radios for dynamic spectrum access—Dynamic spectrum access in the time domain: Modeling and exploiting white space. IEEE Communication Magazine, 45, 66–72.

    Article  Google Scholar 

  13. Papadimitratos, P., Sankaranarayanan, S., & Mishra, A. (2005). A bandwidth sharing approach to improve licensed spectrum utilization. IEEE Communication Magazine, 43, 279–288.

    Article  Google Scholar 

  14. van Der Schaar, M., & N, S. S. (2005). Cross-layer wireless multimedia transmission: Challenges, principles, and new paradigms. IEEE Wireless Communication, 12, 50–58.

    Article  Google Scholar 

  15. Khan, S., Peng, Y., Steinbach, E., Sgroi, M., & Kellerer, W. (2006). Application-driven cross-layer optimization for video streaming over wireless networks. IEEE Communication Magazine, 44, 122–130.

    Article  Google Scholar 

  16. Chapin, J. M., & Lehr, W. H. (2007). The path to market success for dynamic spectrum access technology. IEEE Communication Magazine, 45, 96–103.

    Article  Google Scholar 

  17. He, Z., Cai, J., & Chen, C. (2002). Joint source channel rate-distortion analysis for adaptive mode selection and rate control in wireless video coding. IEEE Transaction on Circuits and System for Video Technology, 12, 511–523.

    Article  Google Scholar 

  18. Boukerche, A. (2005). Handbook of algorithms for wireless networking and mobile computing (Chapman & Hall/Crc Computer & Information Science). London: Chapman & Hall/CRC.

    Book  Google Scholar 

  19. Boukerche, A., Hong, S., & Jacob, T. (2002). An efficient synchronization scheme of multimedia streams in wireless and mobile systems. IEEE Transaction on Parallel Distribution System, 13(9), 911–923.

    Article  Google Scholar 

  20. Van Der Schaar, M., Turaga, D. S., & Wong, R. (2006). Classification-based system for cross-layer optimized wireless video transmission. IEEE Transaction on Multimedia, 8, 1082–1095.

    Article  Google Scholar 

  21. Wu, D., Ci, S., & Wang, H. (2007). Cross-layer optimization for video summary transmission over wireless networks. IEEE Journal of Selected Areas Communication, 25, 841–850.

    Article  Google Scholar 

  22. Chan, Y. S., Modestino, J. W., Qu, Q., & Fan, X. (2007). An end-to-end embedded approach for multicast/broadcast of scalable video over multiuser CDMA wireless networks. IEEE Transaction on Multimedia, 9, 655–667.

    Article  Google Scholar 

  23. Cassandra, A. R. (1998). exact and approximate algorithms for partially observed markov decision process. PhD thesis, Brown University.

  24. Lee, H.-J., Chiang, T., & Zhang, Y.-Q. (2000). Scalable rate control for MPEG-4 video. IEEE Transaction on Circuits and System for Video Technology, 10, 878–894.

    Article  Google Scholar 

  25. He, Z., Kim, Y. K., & Mitra, S. K. (2001). Object-level bit allocation and scalable rate control for MPEG-4 video coding. In Proceedings of workshop and exhibition on MPEG-4 (pp. 63–66)

  26. Stuhlmuller, K., Farber, N., Link, M., & Girod, B. (2000). Analysis of video transmission over lossy channels. IEEE Journal of Selected Areas Communication, 18, 1012–1032.

    Article  Google Scholar 

  27. Liao, J. Y. & Villasenor, J. (2000). Adaptive intra block update for robust transmission of H.263. IEEE Transaction on Circuits and System for Video Technology, 10, 30–35.

    Article  Google Scholar 

  28. Cote, G., Shirani, S., & Kossentini, F. (2000). Optimal mode selection and synchronization for robust video communications over error-prone networks. IEEE Journal of Selected Areas Communication, 18, 952–965.

    Article  Google Scholar 

  29. Tong, H., & Brown, T. (2000). Adaptive call admission control under quality of service constraints: A reinforcement learning solution. IEEE Journal of Selected Areas Communication, 18(2), 209–221.

    Article  Google Scholar 

  30. Bergamo, P., Maniezzo, D., Giovanardi, A., Mazini, G., & Zorzi, M. (2002). Improved markov model for rayleigh fading envelope. Electronics Letters, 38, 477–478.

    Article  Google Scholar 

  31. Hoang, A. T., & Motani, M. (2004). Buffer and channel adaptive transmission over fading channels with imperfect channel state information. In Proceedings of IEEE WCNC’04, 3, Mar. 2004.

  32. Lovejoy, W. (1991). A survey of algorithmic methods for partially observed Markov decision processes. Annals of Operational Research, 28, 47–66.

    Article  MATH  MathSciNet  Google Scholar 

  33. Lovejoy, W. (1991). Computationally feasible bounds for partially observed Markov decision processes. Operations Research, 39, 162–175.

    Article  MATH  MathSciNet  Google Scholar 

  34. Krishnamurthy, V. (2005). Emission management for low probability intercept sensors in network centric warfare. IEEE Transaction on Aerospace Eelectronic Systems, 41(1), 133–152.

    Article  Google Scholar 

  35. Krishnamurthy, V., & Djonin, D. (2007). Structured threshold policies for dynamic sensor scheduling—A partially observed Markov decision process approach. IEEE Transaction on Signal Processing, 55, 5069–5083.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank the reviewers for their detailed reviews and constructive comments, which have helped to improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Richard Yu.

Additional information

This work is supported by Natural Science and Engineering Research Council of Canada and it is based in part on a paper presented at IEEE WCNC 2009, Budapest, Hungary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, F.R., Sun, B., Krishnamurthy, V. et al. Application layer QoS optimization for multimedia transmission over cognitive radio networks. Wireless Netw 17, 371–383 (2011). https://doi.org/10.1007/s11276-010-0285-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-010-0285-8

Keywords

Navigation