Skip to main content
Log in

A manifold flattening approach for anchorless localization

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

We present a new method for anchorless localization of mobile nodes in wireless networks using only measured distances between pairs of nodes. Our method relies on the completion of the Euclidean distance matrix, followed by multidimensional scaling in order to compute the relative locations of the nodes. The key element of novelty of our algorithm is the method of completing the Euclidean distance matrix, which consists of gradually inferring the unknown distances, such as to align all nodes on a k-hyperplane, where typically k is 2 or 3. Our method leads to perfect anchorless localization for noise-free range measurements, if the network is sufficiently connected. We introduce refinements to the algorithm to make it robust to noisy and outlier range measurements. We present results from several localization tests, using both simulated data and experimental results measured using a large indoor network deployment of our WASP platform. Our results show improvements in localization using our algorithm over previously published techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Sathyan, T., Humphrey, D., & Hedley, M. (2011). A system and algorithms for accurate radio localization using low-cost hardware. IEEE Transactions on Systems, Man and Cybernetics Part C, 41(2), 211–222.

    Article  Google Scholar 

  2. Bulusu, N., Heidemann, J., & Estrin, D. (2000). GPS-less low cost outdoor localization for very small devices. IEEE Personal Communications Magazine, 7(5), 28–34.

    Article  Google Scholar 

  3. Capkun, S., Hamdi, M., & Hubaux, J. -P. (2001). GPS-free positioning in mobile adhoc networks. Proceedings of 34th IEEE Hawaii International Conference on System Sciences, 9.

  4. Sottile, F., & Spirito, M. A. (2008). Robust localization for wireless sensor networks. Proceedings of Sensor, Mesh and Ad Hoc Communications and Networks 2008 (pp. 46–54).

  5. Ferner, U., Wymeersch, H., & Win, M. Z. (2008). Cooperative anchor-less localization for large dynamic networks. Proceedings of ICUWB 2008, IEEE International Conference on Ultra-Wideband. (Vol. 2, pp. 181–185).

  6. Gustafsson, F., & Gunnarson, F. (2005). Mobile positioning using wireless networks. IEEE Signal Processing Magazine, 22(4), 41–52.

    Article  Google Scholar 

  7. Patwari, N., Ash, J. N., Kyperounas, S., Hero, A. O., Moses, R. L., & Correal, N. (2005). Locating the Nodes. IEEE Signal Processing Magazine, 22(4), 54–69.

    Article  Google Scholar 

  8. Popescu, D. C., Hedley, M., & Sathyan, T. (2011). Anchorless localization with local manifold flattening. Proceedings of 22-nd IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Toronto, Canada (pp. 1259–1263).

  9. Aspens, J., Eren, T., Goldenberg, D. K., Morse, S. A., Whiteley, W., Yang, R. Y., & Anderson, B. O. (2006). A theory of network localization. IEEE Transactions on Mobile Computing, 5(12), 1663–1677.

    Article  Google Scholar 

  10. Liu, H., Darabi, H, Banejee, P., & Liu, J. (2007). Survey of wireless indoor positioning techniques and systems. IEEE Transactions on Systems, Man and Cybernetics-Part C: Applications and Reviews, 37(6), 1067–1080.

    Article  Google Scholar 

  11. Cox, T. F., & Cox, M. A. A. (2001). Multidimensional scaling. London: Chapman and Hall.

    MATH  Google Scholar 

  12. Johnson, C. R. (1990). Matrix completion problems: A survey. Proceedings of Symposia of Applied Mathematics 40, American Mathematical Society. (pp. 171–198).

  13. Laurent, M. (2001). Matrix completion problems. The encyclopedia of optimization (Vol. 3, pp. 221–229). Dordrecht: Kluwer.

  14. Alfakih, A., & Wolkowitz, H. (2000). Matrix completion problems. Handbook of Semidefinite Programming, International Series on Operations Research and Management Science, 27, 533–545.

    Google Scholar 

  15. Hogben, L. (2001). Graph theoretic methods for matrix completion problems. Linear Algebra and Its Applications, 328(1–3), 161–202.

    Article  MathSciNet  MATH  Google Scholar 

  16. Shang, Y., Wheeler, R., Zhang, Y., & Fromherz, M. P.J . (2003). Localization from mere connectivity. Proceedings of 4-th ACM International Symposium on Mobile Ad Hoc Networking and Computing, Annapolis, MD. (pp. 201–212).

  17. Costa, J., Patwari, N., & Hero, A. O. (2006). Distributed multidimensional scaling with adaptive weighting for node localization in sensor networks. ACM Journal of Sensor Networking, 2(1), 39–64.

    Article  Google Scholar 

  18. Crippen, G. M. & Havel, T. F. (1988). Distance geometry and molecular conformations. Taunton, England, New York: Research Studies Press, Wiley.

    Google Scholar 

  19. Montanari, A. & Oh, S. (2010). On positioning via distributed matrix completion. IEEE Sensor Array and Multichannel Signal Processing Workshop. (pp. 197–200).

  20. Alfakih, A. Y., Khandai, A., & Wolcowicz, H. (1999). Solving euclidean distance matrix completion problems via semidefinite programming. Computational Optimization and Applications, 12(1–3), 13–30.

    Article  MathSciNet  MATH  Google Scholar 

  21. Candes, J. E., & Recht, B. (2010). Exact matrix completion via convex optimization. Foundations of Computational Mathematics, 9(6), 717–772.

    Article  MathSciNet  Google Scholar 

  22. Sommerville, D. M. Y. (1958). An introduction to the geometry of n dimensions. New York: Dover Publications Inc.

    MATH  Google Scholar 

  23. Connelly, R. (1991). Generic global rigidity. Applied geometry and discrete mathematics, DIMACS series, AMS and ACM. (pp. 147–155).

  24. Hendrickson, B. (1992). Conditions for unique graph realizations. SIAM Journal on Computing, 21(1), 65–84.

    Article  MathSciNet  MATH  Google Scholar 

  25. http://orion.math.uwaterloo.ca/hwolkowi/henry/software.

  26. Humphrey, D. & Hedley, M. (2008). Super-resolution time of arrival for indoor localization. Proceedings of IEEE International Conference on Communications. Beijing, China. (pp. 3286–3290).

  27. Hedley, M., Humphrey, D., & Ho, P. System and algorithms for accurate tracking using low-cost hardware. Position Location and Navigation Symposium, Monterey, CA. (pp. 633–640).

  28. Jamali, H. R., Amar, A., & Leus, G. (2011). Cooperative mobile network localization via subspace tracking. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Prague, Czech Republic. (pp. 2612–2615).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan C. Popescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popescu, D.C., Hedley, M. & Sathyan, T. A manifold flattening approach for anchorless localization. Wireless Netw 18, 319–333 (2012). https://doi.org/10.1007/s11276-011-0402-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-011-0402-3

Keywords

Navigation