Skip to main content
Log in

Throughput performance of parallel and repetition coding in incremental decode-and-forward relaying

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The throughput performance of cooperative repetition and parallel coding in incremental decode-and-forward is investigated. Four transmission methods are considered: parallel coding with and without distributed space-time coding (PC-ST and PC, respectively); and repetition coding with and without Chase combining at the destination (RC and SC, respectively). The analysis is based on the mutual information seen at the receiver for each scheme. Exact expressions for the outage probability and throughput for all methods are derived. Both ad-hoc and infra-structured relaying scenarios are investigated. Results show that SC can perform very close to RC, PC and PC-ST in terms of throughput, specially in the case of infra-structured relaying or adequate power and rate allocation. The conclusion is that SC would be a better option in practice, since it requires a simpler receiver than PC-ST, PC, and RC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. In SC, as the receiver does not combine the original and the retransmitted messages, the outage is determined by the link with the best SNR between the source to destination and the relay to destination links. Thus, we can say that the receiver applies “selection combining” between the signals received from the source and from the relay.

  2. In this paper all channels are modeled as a random variable from a complex Gaussian distribution with zero mean and unity variance, so that the channel envelope is Rayleigh distributed with unity energy.

  3. The source and the relay retransmit in perfect synchronism only if the relay was able to decode the original source transmission. Otherwise, the retransmission comes from the source alone.

  4. The Matlab function fmincon was used to numerically solve the optimization problem.

  5. One might argue that power allocation between source and relay should not be considered for the infra-structured scenario, since the relay is deployed by the service provider. However, we consider the power allocation between source and relay because in an energy efficiency sense it is interesting to see how well the methods can perform under a limited amount of resources (one could compare the efficiency of ad-hoc relaying to that of infra-structured relaying). Moreover, the general conclusion—that the schemes perform basically the same—simply does not change if one considers only rate allocation in the infra-structured scenario.

References

  1. Goldsmith, A. (2005). Wireless communications (1st edn.). Cambridge: Cambridge University Press.

    Google Scholar 

  2. Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.

    Article  MathSciNet  Google Scholar 

  3. Nosratinia, A., Hunter, T. E., & Hedayat, A. (2004). Cooperative communication in wireless networks. IEEE Communications Magazine, 42(10), 74–80.

    Article  Google Scholar 

  4. Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity—Part I: System description. IEEE Transactions on Communications, 51(11), 1927–1938.

    Article  Google Scholar 

  5. Van der Meulen, E. C. (1971). Three-terminal comunication channels. Advanced Applied Probability, 3, 120–154.

    Article  MATH  Google Scholar 

  6. Stefanov, A., & Erkip, E. (2004). Cooperative coding for wireless networks. IEEE Transactions on Communications, 52(9), 1470–1476.

    Article  Google Scholar 

  7. Hunter, T. E., Sanayei, S., & Nosratinia, A. (2006). Outage analysis of coded cooperation. IEEE Transactions on Information Theory, 52(2), 375–391.

    Article  MathSciNet  Google Scholar 

  8. Zhao, B., & Valenti, M.C. (2003). Distributed turbo coded diversity for relay channel. IEE Electronics Letters, 39(10), 786–787.

    Article  Google Scholar 

  9. Zhang, Z., & Duman, T. M. (2005). Capacity-approaching turbo coding and iterative decoding for relay channels. IEEE Transactions on Communications, 53(11), 1895–1885.

    Article  Google Scholar 

  10. Hu, J., & Duman, T. M. (2007). Low density parity check codes over wireless relay channels. IEEE Transactions on Wireless Communications, 6(9), 3384–3394.

    Article  Google Scholar 

  11. Khormuji, M., & Larsson, E. (2009). Cooperative transmission based on decode-and-forward relaying with partial repetition coding. IEEE Transactions on Wireless Communications, 8(4), 1716–1725.

    Article  Google Scholar 

  12. Laneman, J. N., & Wornell, G. W. (2003). Distributed space-time coded protocols for exploiting cooperative diversity in wireless networks. IEEE Transactions on Information Theory, 49(10), 2415–2425.

    Article  MathSciNet  Google Scholar 

  13. Chase, D. (1985). Code combining—a maximum-likelihood decoding approach for combining an arbitrary number of noisy frames. IEEE Transactions on Communications, 33(5), 385–393.

    Article  Google Scholar 

  14. Tabet, T., Dusad, S., & Knopp, R. (2007). Diversity-multiplexing-delay tradeoff in half-duplex ARQ relay channels. IEEE Transactions on Informations Theory, 53(10), 3797–3805.

    Article  MathSciNet  Google Scholar 

  15. Caire, G., & Tuninetti, D. (2001). The throughput of Hybrid-ARQ protocols for the Gaussian collision channel. IEEE Transactions on Informations Theory, 47(5), 1971–1988.

    Article  MathSciNet  MATH  Google Scholar 

  16. Malkamaki, E. & Leib, H. (1999). Coded diversity on block-fading channels. IEEE Transactions on Informations Theory, 45(2), 771–781.

    Article  MathSciNet  Google Scholar 

  17. Knopp, R., & Humblet, P. (2000). On coding for block fading channels. IEEE Transactions on Informations Theory, 46(1), 189–205.

    Article  MATH  Google Scholar 

  18. Biglieri, E., Caire, G., & Taricco, G. (2001). Limiting performance of block-fading channels with multiple antennas. IEEE Transactions on Informations Theory, 47(4), 1273–1289.

    Article  MathSciNet  MATH  Google Scholar 

  19. Cheng, J.-F. (2006). Coding performance of hybrid ARQ schemes. IEEE Transactions on Communications, 54(6), 1017–1029.

    Article  Google Scholar 

  20. Papolulis, A., & Pillai, U. (2002). Probability, random variables amd stochastic processes (4th edn.). New York: McGRaw Hill.

    Google Scholar 

  21. Zheng, L., & Tse, D. (2003). Diversity and multiplexing: A fundamental tradeoff in multiple antenna channels. IEEE Transactions on Information Theory, 49(5), 1073–1096.

    Article  MATH  Google Scholar 

  22. Nabar, R. U., Bolcskei, H., Kneubuhler, F. W. (2004, Aug). Fading relay channels: Performance limits and space—time signal design. IEEE Journal on Selected Areas in Communications, 22(6), 1099–1109.

    Google Scholar 

  23. Lin, S., Costello, D., & Miller, M. (1984). Automatic-repeat-request error-control schemes. IEEE Communications Magazine, 22(12), 5–17.

    Article  Google Scholar 

  24. Sadek, A. K., Han, Z., & Liu, K. J. R. (2010). Distributed relay-assignment protocols for coverage expansion in cooperative wireless networks. IEEE Transactions on Mobile Computing, 9(4), 505–515.

    Article  Google Scholar 

  25. Ichitsubo, S. (1996). 2 GHz-band propagation loss prediction in urban areas; antenna heights ranging from ground to building roof. IEICE Technical Report.

Download references

Acknowledgments

This work was partially supported by CNPq and CAPES (Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Demo Souza.

Appendix: The case of N retransmissions

Appendix: The case of N retransmissions

1.1 Outage formulation

Allowing for additional retransmissions from either the sourcr the relay in the case of SC is not useful since we consider a long-term quasi-static channel and there is no symbol combining at the receiver. Therefore, next we consider only the cases of RC, PC, and PC-ST.

The RC outage probability in (7) can be easily generalized to the case of N relay retransmissions as:

$$ {\mathcal{P}}_{RC_{N}}=\frac{N \hbox{SNR}_{RD}\left( e^{\frac{1-2^{R}}{N {\rm SNR}_{RD}}}-1\right) -\hbox{SNR}_{SD}\left( e^{\frac{1-2^{R}}{{\rm SNR}_{SD}}}-1\right) }{\hbox{SNR}_{SD}-N \hbox{SNR}_{RD}}, $$
(25)

while for the cases of PC and PC-ST, (12) and (15) can be generalized as, respectively:

$$ \begin{aligned} {\mathcal{P}}_{PC_{N}} &= {\mathcal{P}}\left\{ I_{PC_{N}}<R\right\} =\frac{1}{N \hbox{SNR}_{SD}\hbox{SNR}_{RD}} \\ &\times \int\limits_{1}^{2^{R}}\int\limits_{0}^{z-1}\frac{e^{\frac{1}{{\rm SNR}_{RD}}-\frac{w}{{\rm SNR}_{SD}}-\frac{1}{{\rm SNR}_{RD}} \left(\frac{z}{1+w}\right) ^{\frac{1}{N}}}}{\left(1+w\right)^{\frac{1}{N}} z^{\frac{1}{N}-1} }dwdz, \end{aligned} $$
(26)

and

$$ \begin{aligned} {\mathcal{P}}_{PC-ST_{N}} &= \frac{1}{\hbox{N} \hbox{SNR}_{RD}\hbox{SNR}_{SD}} \\ & \times \int\limits_{1}^{2^{R}}\int\limits_{0}^{-1+z^{\frac{1}{N+1}}}\frac{e^{-\left( \frac{1}{{\rm SNR}_{RD}}\left( \frac{z}{w+1}\right) ^{\frac{1}{N}}+\frac{\left( {\rm SNR}_{RD}-{\rm SNR}_{SD}\right) w}{{\rm SNR}_{RD}{\rm SNR} _{SD}}-\frac{\hbox{1}}{{\rm SNR}_{RD}}\right) }}{(w+1)^{1/\hbox{N}}z^{1-\frac{1}{\hbox{N}}}}dw dz, \\ \end{aligned} $$
(27)

when κ = 1. Note that \(\mathcal{P}_{RC_{N}}\) in (25) for N = 1 is the same as \(\mathcal{P}_{RC}\) defined in (7). Moreover, we use the notation \(\mathcal{P}_{RC_{1}}\) and \(\mathcal{P}_{RC}\) interchangeably. The same holds for the cases of PC and PC-ST.

The generalization of the overall outage probabilities after N retransmissions (therefore including the effect of the SR channel) is quite straightforward and can be easily obtained following the principles used in (9). We skip that here for the sake of brevity.

1.2 Throughput formulation

The throughput for RC when N retransmissions are allowed can be written as:

$$ \begin{aligned} {\mathcal{T}}_{RC_N} &= R \left(1-{\mathcal{P}}_{SD}\right) + \frac{R}{2} \cdot {\mathcal{P}}_{SD} \cdot {\mathcal{P}}_{SR} \cdot \left( 1 - \frac{{\mathcal{P}}_{SD_2}}{{\mathcal{P}}_{SD}} \right) \\ &\quad+ \frac{R}{2} \cdot {\mathcal{P}}_{SD} \cdot \left(1-{\mathcal{P}}_{SR}\right) \cdot \left(1 - \frac{{\mathcal{P}}_{RC}}{{\mathcal{P}}_{SD}}\right) \\ &\quad+ \cdots \frac{R}{N+1} \cdot {\mathcal{P}}_{SD} \cdot {\mathcal{P}}_{SR} \cdot \left(\frac{{\mathcal{P}}_{SD_2}}{{\mathcal{P}}_{SD}} \right) \cdots \left(\frac{{\mathcal{P}}_{SD_{N}}}{{\mathcal{P}}_{SD_{N-1}}} \right) \left( 1 - \frac{{\mathcal{P}}_{SD_{N+1}}}{{\mathcal{P}}_{SD_{N}}} \right) \\ &\quad+ \frac{R}{N+1} \cdot {\mathcal{P}}_{SD} \cdot \left(1-{\mathcal{P}}_{SR}\right) \cdot \left(\frac{{\mathcal{P}}_{RC}}{{\mathcal{P}}_{SD}}\right) \cdot \left(\frac{{\mathcal{P}}_{RC_2}}{{\mathcal{P}}_{RC}}\right) \cdots \left(\frac{{\mathcal{P}}_{RC_{N-1}}}{{\mathcal{P}}_{RC_{N-2}}}\right) \cdot \left(1-\frac{{\mathcal{P}}_{RC_N}}{{\mathcal{P}}_{RC_{N-1}}}\right), \end{aligned} $$
(28)

where \(\mathcal{P}_{SD_{N}}\) is the outage probability in the SD link after N consecutive transmissions from the source when Chase combining is applied at the destination. Moreover, the above throughput formulation can be rewritten as:

$$ \begin{aligned} {\mathcal{T}}_{RC_N} &=R \left(1-{\mathcal{P}}_{SD}\right) + \frac{R}{2} \cdot {\mathcal{P}}_{SD} \cdot \left(1-{\mathcal{P}}_{SR}\right) \cdot \left(1 - \frac{{\mathcal{P}}_{RC}}{{\mathcal{P}}_{SD}}\right)\\ &\quad+ {\mathcal{P}}_{SR} \sum_{n=1}^{N} \left\{\frac{R}{n+1} \cdot \left[ {\mathcal{P}}_{SD_{n}} - {\mathcal{P}}_{SD_{n+1}} \right] \right\} \\ &\quad+ \left( 1- {\mathcal{P}}_{SR} \right) \sum_{n=2}^{N} \left\{\frac{R}{n+1} \cdot \left[ {\mathcal{P}}_{RC_{n-1}} - {\mathcal{P}}_{RC_n} \right] \right\}. \end{aligned} $$
(29)

The cases of PC and PC-ST can be easily obtained from above.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alves, H., Souza, R.D., Fraidenraich, G. et al. Throughput performance of parallel and repetition coding in incremental decode-and-forward relaying. Wireless Netw 18, 881–892 (2012). https://doi.org/10.1007/s11276-012-0440-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-012-0440-5

Keywords

Navigation