Skip to main content
Log in

Protocol and architecture supports for network mobility with QoS-handover for high-velocity vehicles

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The evolution of wireless access technologies has led to a new era of mobile Internet for high-velocity vehicles. Network mobility is particularly suitable for vehicles because it considers the mobility of an entire network. Vehicles perform handover frequently thus efficient handover is essential to meet the QoS requirements for real-time communications. For high-velocity vehicles, the time constraint is even stricter and the Doppler Effect increases the transmission error rate that both add challenges in mobility management. In this paper, we propose a cross-layer hierarchical network mobility framework called Hi-NEMO for all-IP networks. The advantage of Hi-NEMO is no extra triangular route between a mobile network node and the correspondent node. The design is resilient to error-prone transmission, and protocol-supports fast QoS provisioning in the network mobility service domain. Intensive simulation results demonstrate that Hi-NEMO reduces handover latency as well as packet loss, and supports handover requirements in high-velocity vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Ernst, T., & Lach, H.-Y. (2007). Network Mobility Support Terminology. RFC 4885: IETF.

  2. Russell, M., & Stuber, G. L. (1995). Interchannel interference analysis of OFDM in a mobile environment. Paper presented at the IEEE 45th Vehicular Technology Conference, 25–28 Jul.

  3. Technical Specification Group Radio Access Network; Requirements for further advancements for Evolved Universal Terrestrial Radio Access (E-UTRA) (LTE-Advanced) (Release 9) (2009). 3rd Generation Partnership Project.

  4. Lee, C.-W., Sun, Y. S., & Chen, M. C. (2008). HiMIP-NEMO: Combining cross-layer network mobility management and resource allocation for fast QoS-handovers. Paper presented at the IEEE Vehicular Technology Conference (VTC Spring 2008).

  5. Devarapalli, V., Wakikawa, R., Petrescu, A., & Thubert, P. (2005). Network Mobility (NEMO) basic support protocol. RFC 3963: IETF.

  6. Ernst, T. (2001). Network Mobility Support in IPv6. Ph.D Thesis, Université Joseph Fourier.

  7. Calderon, M., Bernardos, C. J., Bagnulo, M., Soto, I., & Oliva, A. (2006). Design and experimental evaluation of a route optimization solution for NEMO. IEEE Journal on Selected Areas in Communications, 24(9), 1702–1716.

    Article  Google Scholar 

  8. Forsberg, D., Ohba, Y., Patil, B., Tschofenig, H., & Yegin, A. (2008). Protocol for Carrying Authentication for Network Access (PANA). RFC 5191: IETF.

  9. Na, J., Choi, J., Cho, S., Kim, C., Lee, S., Kang, H., et al. (2004). A unified route optimization scheme for network mobility. Lecture Notes in Computer Science, 3260(2004), 614–617.

    Google Scholar 

  10. Mimoune, F., Nait-Abdesselam, F., Taleb, T., & Hashimoto, K (2007) Route Optimization for Large Scale Network Mobility Assisted by BGP. In IEEE Global Telecommunications Conference (GLOBECOM). 2630 Nov. 2007 (pp. 4659–4663).

  11. Huang, C.-M., Lee, C.-H., & Zheng, J.-R. (2006). A novel SIP-based route optimization for network mobility. IEEE Journal on Selected Areas in Communications, 24(9), 1682–1691.

    Article  Google Scholar 

  12. Tseng, Y.-C., Chen, J.-J., & Cheng, Y.-L. (2007). Design and implementation of a SIP-based mobile and vehicular wireless network with push mechanism. IEEE Transactions on Vehicular Technology, 56(6), 3408–3420.

    Article  Google Scholar 

  13. Perera, E., Seneviratne, A., & Sivaraman, V. (2004). OptiNets: An architecture to enable optimal routing for network mobility. Paper presented at the International Workshop on Wireless Ad-Hoc Networks, 31 May–3 Jun.

  14. Moore, N. (2006). Optimistic duplicate address detection (DAD) for IPv6. RFC 4429: IETF.

  15. Koodli, R. (2009). Mobile IPv6 fast handovers. RFC 5568: IETF.

  16. Jang, H., Jee, J., Han, Y., Park, S., & Cha, J. (2008). Mobile IPv6 fast handovers over IEEE 802.16e Networks. RFC 5270: IETF.

  17. Han, Y. H., Jang, H., Choi, J., Park, B., & McNair, J. (2007). A cross-layering design for IPv6 fast handover support in an IEEE 802.16e wireless MAN. IEEE Network, 21(6), 54–62.

    Article  Google Scholar 

  18. Yokota, H., & Dommety, G. (2008). Mobile IPv6 fast handovers for 3G CDMA Networks. RFC 5271: IETF.

  19. Mussabbir, Q. B., Yao, W., Niu, Z., & Fu, X. (2007). Optimized FMIPv6 using IEEE 802.21 MIH services in vehicular networks. IEEE Transactions on Vehicular Technology, 56(6), 3397–3407.

    Article  Google Scholar 

  20. Han, Y.-H., Choi, J., & Hwang, S.-H. (2006). Reactive handover optimization in IPv6-based mobile networks. IEEE Journal on Selected Areas in Communications, 24(9), 1758–1772.

    Article  Google Scholar 

  21. Soliman, H., Castelluccia, C., ElMalki, K., & Bellier, L. (2008). Hierarchical Mobile IPv6 (HMIPv6) Mobility Management. RFC 5380: IETF.

  22. Gundavelli, S., Leung, K., Devarapalli, V., Chowdhury, K., & Patil, B. (2008). Proxy Mobile IPv6. RFC 5213: IETF.

  23. Campbell, A. T., Gomez, J., Kim, S., Valko, A. G., Wan, C.-Y., & Turanyi, Z. R. (2000). Design, implementation, and evaluation of cellular IP. IEEE Personal Communications, 7(4), 42–49.

    Article  Google Scholar 

  24. Campbell, A. T., Gomez, J., Kim, S., Wan, C.-Y., Turanyi, Z. R., & Valko, A. G. (2002). Comparison of IP micromobility protocols. IEEE Wireless Communications, 9(1), 72–82.

    Article  Google Scholar 

  25. Reinbold, P., & Bonaventure, O. (2003). IP micro-mobility protocols. IEEE Communications Surveys & Tutorials, 5(1), 40–57.

    Article  Google Scholar 

  26. Perera, E., Sivaraman, V., & Seneviratne, A. (2004). Survey on network mobility support. SIGMOBILE Mob. Comput. Commun. Rev., 8(2), 7–19.

    Article  Google Scholar 

  27. Braden, R., Zhang, L., Berson, S., Herzog, S., & Jamin, S. (1997). Resource ReSerVation Protocol (RSVP). RFC 2205: IETF.

  28. Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V., & Swallow, G. (2001). RSVP-TE: extensions to RSVP for LSP tunnels. RFC 3209: IETF.

  29. Talukdar, A. K., Badrinath, B. R., & Acharya, A. (2001). MRSVP: A resource reservation protocol for an integrated services network with mobile hosts. Wireless Networks, 7(1), 5–19.

    Article  MATH  Google Scholar 

  30. Tseng, C.-C., Lee, G.-C., Liu, R.-S., & Wang, T.-P. (2003). HMRSVP: A hierarchical mobile RSVP protocol. Wireless Networks, 9(2), 95–102.

    Article  MATH  Google Scholar 

  31. Malik, M. A., Kanhere, S. S., Hassan, M., & Benatallah, B. (2004). On-Board RSVP: An extension of RSVP to support real-time services in on-board IP networks. Lecture Notes in Computer Science, 3326, 264–275.

    Article  Google Scholar 

  32. M. Tlais, & Labiod, H. (2005). Resource reservation for NEMO networks. Paper presented at the 2005 International Conference on Wireless Networks, Communications and Mobile Computing, 13–16 Jun.

  33. Wang, J.-T., Hsu, Y.-Y., & Tseng, C.-C. (2006). A Bandwidth-sharing Reservation Scheme to Support QoS for Network Mobility. Paper presented at the IEEE International Conference on Communications (ICC ‘06), Jun.

  34. IEEE. (2009). IEEE Standard for Local and metropolitan area networks. Part 16: Air Interface for Broadband Wireless Access Systems (pp. C1-2004): IEEE.

  35. Wang, Yaning, Fan, Linghang, He, Dan, & Tafazolli, R. (2008). Performance comparison of scheduling algorithms in network mobility environment. Computer Communications, 31(9), 1727–1738. doi:10.1016/j.comcom.2007.11.017.

    Article  Google Scholar 

  36. Eryilmaz, A., & Srikant, R. (2007). Fair resource allocation in wireless networks using queue-length-based scheduling and congestion control. IEEE/ACM Transactions on Networking, 15(6), 1333–1344.

    Article  Google Scholar 

  37. Soh, W.-S., & Kim, H. S. (2006). A predictive bandwidth reservation scheme using mobile positioning and road topology information. IEEE/ACM Trans Netw, 14(5), 1078–1091.

    Article  Google Scholar 

  38. Abdelzaher, T. F., Atkins, E. M., & Shin, K. G. (2000). QoS negotiation in real-time systems and its application to automated flight control. IEEE Transactions on Computers, 49(11), 1170–1183.

    Article  Google Scholar 

  39. Johnson, D., Perkins, C., & Arkko, J. (2004). Mobility support in IPv6. RFC 3775: IETF.

  40. Narten, T., Nordmark, E., Simpson, W., & Soliman, H. (2007). Neighbor discovery for IP version 6 (IPv6). RFC 4861: IETF.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Wei Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, CW., Chen, M.C. & Sun, Y.S. Protocol and architecture supports for network mobility with QoS-handover for high-velocity vehicles. Wireless Netw 19, 811–830 (2013). https://doi.org/10.1007/s11276-012-0503-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-012-0503-7

Keywords

Navigation