Skip to main content
Log in

Queue management based duty cycle control for end-to-end delay guarantees in wireless sensor networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, we propose an analytical method for duty cycle adaptation in wireless sensor networks so that delay requirement is guaranteed while power consumption is minimized. The proposed method, named Dual-QCon, provides a formal method for stabilizing controller design based on queue management in order to control both duty cycle and queue threshold according to changing network conditions. Dual-QCon also provides a delay notification mechanism in order to determine an appropriate queue threshold of each node according to the application-dependent and time-varying delay requirements. Based on control theory, we analyze the adaptive behavior of the proposed method and derive conditions for system stability. Asymptotic analysis shows that Dual-QCon guarantees end-to-end delay requirement by controlling parameters of local nodes. Simulation results indicate that Dual-QCon outperforms existing scheduling protocols in terms of delay and power consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bachir, A., Dohler, M., Watteyne, T., & Leung K. K. (2010). MAC essentials for wireless sensor networks. IEEE Communications Surveys & Tutorials 12(2), 222–248.

    Article  Google Scholar 

  2. Ergen, S. C., & Varaiya, P. (2006). PEDAMACS: Power efficient and delay aware medium access protocol for sensor networks. IEEE Transactions on Mobile Computing 5(7), 920–930.

    Article  Google Scholar 

  3. Ringwald, M., & Romer, K. (2005). BitMAC: A deterministic, collision-free, and robust MAC protocol for sensor networks. In Proceedings of IEEE EWSN, pp. 57–69.

  4. Brownfield, M. I., Mehrjoo, K., Fayes, A. S., & Davis, N. J. (2006). Wireless sensor network energy-adaptive MAC protocol. In Proceedings of IEEE CCNC, Vol. 2, pp. 778–782.

  5. Rajendran, V., Garcia-Luna-Aceves, J. J., & Obraczka, K. (2005). Energy-efficient, application-aware medium access for sensor networks. In Proceedings of IEEE MASS, pp. 623–630.

  6. Barroso, A., Roedig, U., & Sreenan, C. (2005) uMAC: An energy-efficient medium access control for wireless sensor networks. In Proceedings of IEEE EWSN.

  7. Cheong, P., & Oppermann, I. (2005). An energy-efficient positioning-enabled MAC protocol (PMAC) for UWB sensor networks. In Proceedings of IST mobile and wireless communications summit, pp. 95–107.

  8. Zheng, T., Radhakrishnan, S., & Sarangan, V. (2005). PMAC: An adaptive energy-efficient MAC protocol for wireless sensor networks. In Proceedings of IPDPS.

  9. Polastre, J., Hill, J., & Culler, D. (2004) Versatile low power media access for wireless sensor networks. In Proceedings of ACM SenSys, pp. 95–107.

  10. Ye, W., Silva, F., & Heidemann, J. (2006). Ultra-low duty cycle MAC with scheduled channel polling. In Proceedings of ACM SenSys, pp. 321–334.

  11. Jurdak, R., Baldi, P., & Lopes, C.V. (2005). Energy-aware adaptive low power listening for sensor networks. In Proceedings of INSS, pp. 24–29.

  12. Silberstein, A., Braynard, R., & Ellis, C. (2006). Extending network lifetime using an automatically tuned energy-aware MAC protocol. In Proceedings of EWSN, pp. 244–259.

  13. Pereira, M., Macedo, M., Pinto, P., Bernardo, L., & Oliveira, R. (2007). A wireless sensor MAC protocol for bursty data traffic. In Proceedings of IEEE PIMRC, pp. 1–5.

  14. Liu, S., Fan, K. -W., & Sinha, P. (2007). CMAC: And energy efficient MAC layer protocol using convergent packet forwarding for wireless sensor networks. In Proceedings of HIPC, pp. 11–20.

  15. Ye, W., Heidemann, J., & Estrin, D. (2002). An energy-efficient MAC protocol for wirelss sensor networks. In Proceedings of IEEE Infocom, New York, NY, July 2002, pp. 1567–1576.

  16. Van Dam, T., & Langendoen, K. (2003). An adaptive energy-efficient MAC protocol for wireless sensor networks. In Proceedings of ACM Sensys, Los Angeles, CA, November 2003, pp. 171–180.

  17. Merlin, C. J. & Heinzelman, W. B. (2010). Duty cycle control for low-power-listening MAC protocols. IEEE Transactions on Mobile Computing 9(11), 1508–1521.

    Article  Google Scholar 

  18. Sun, Y., Du, S., Gurewitz, O., & Johnson, D. B. (2008). DW-MAC: A low lataency, energy efficient demand-wakeup MAC protocol for wireless sensor networks. In Proceedings of ACM MobiHoc, pp. 53–62.

  19. Zhao, Y. Z., Ma, M., Miao, C. Y., & Nguyen, T. N. (2010). An energy-efficient and low-latency MAC protocol with adaptive scheduling for multi-hop wireless sensor networks. Computer Communications 33(12), 1452–1461.

    Article  Google Scholar 

  20. Zhao, Y. Z., Miao, C. Y., & Ma, M. (2012). An energy-effcient self-adaptive duty cycle MAC protocol for traffic-dynamic wireless sensor networks. Wireless Personal Communications, doi:10.1007/s11277-012-0508-7.

  21. Sun, Y., Gurewitz, O., & Johnson, D. B. (2008) RI-MAC: A receiver-initiated asynchronous duty cycle MAC protocol for dynamic traffic loads in wireless sensor networks. In Proceedings of ACM SenSys, pp. 1–14.

  22. Buettner, M., Yee, G., Anderson, E., & Han, R. (2006). X-MAC: A short preamble MAc protocol for duty-cycled wireless sensor networks. In Proceedings of ACM Sensys, pp. 307–320.

  23. Ye, W., Heidemann, J., & Estrin, D. (2004). Medium access control with coordinated, adaptive sleeping for wireless sensor network. IEEE Transactions on Networking, 12(3), 493–506.

    Article  Google Scholar 

  24. Lin, P., Qiao, C., & Wang, X. (2004). Medium access control with a dynamic duty cycle for sensor networks. In Proceedings of IEEE WCNC, Vol. 3, pp. 1534–1539.

  25. Yang, S. H., Tseng, H-W., Wu, E., & Chen, G.-H. (2005). Utilization based duty cycle tuning MAC protocol for wireless sensor networks. Proceedings of IEEE GLOBECOM, Vol. 6, pp. 3258–3262.

  26. Liu, Z., & Elhanany, I. (2006). RL-MAC: A reinforcement learning based MAC protocol for wireless sensor networks. International Journal of Sensor Networks, 1(3/4), 117–124.

    Article  Google Scholar 

  27. Wang, X., Xing, G., & Yao, Y. (2010). Dynamic duty cycle control for end-to-end delay guarantees in wireless sensor networks. In International Workshop on Quality of Service (IWQoS), pp. 1–9.

  28. Byun, H., & Yu, J. (2012). Adaptive duty cycle control with queue management in wireless sensor networks. IEEE Transactions on Mobile Computing (to be published).

  29. Lim, J.-T. & Shim, K. H. (1993). Asymptotic performance evaluation of token passing networks. IEEE Transactions on Industrial Electronics, 40(3), 384–385.

    Article  Google Scholar 

  30. Shim, K. H. & Lim, J. -T. (1997). Performance analysis and design of token-passing networks with two message priorities. IEE Proceedings of Communications, 44(1), 11–16.

    Article  Google Scholar 

  31. Shim, K. -H., & Lim, J. -T. (1996). Extreme-point robust stability of a class of discrete-time polynomials. Electronics Letters 32(15), 1421–1422.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Grant number 20120007689) and also supported by the GRRC program of Gyeonggi province [GRRC SUWON 2012-B5].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jungmin So.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byun, H., Son, S. & So, J. Queue management based duty cycle control for end-to-end delay guarantees in wireless sensor networks. Wireless Netw 19, 1349–1360 (2013). https://doi.org/10.1007/s11276-012-0537-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-012-0537-x

Keywords

Navigation