Skip to main content
Log in

Underwater localization using stochastic proximity embedding and multi-dimensional scaling

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Localization for underwater acoustic sensor networks is an active research topic where a large number of techniques have been proposed recently. This paper addresses one of the open research issues, the impact of underwater sound speed variation on the localization accuracy. In this paper, modified versions of stochastic proximity embedding and multi-dimensional scaling localization algorithms customized for underwater application are proposed. The algorithms are found to provide good performance in underwater scenario as they take into account refractive ray bending of acoustic waves. Detailed study of the algorithm performance has been done and the results are reported. Cramer Rao Lower Bound for the problem is also derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Agrafiotis, D. (2003). Stochastic proximity embedding. Journal of Computational Chemistry, 24(10), 1215–1221.

    Article  Google Scholar 

  2. Aloor, G., & Jacob, L. (2010). Distributed wireless sensor network localization using stochastic proximity embedding. Computer Communications, 33(6), 745–755.

    Article  Google Scholar 

  3. Ameer, P. M., & Jacob, L. (2010). Localization using ray tracing for underwater acoustic sensor networks. Communications Letters, IEEE, 14(10), 930–932.

    Article  Google Scholar 

  4. Bian, T., Venkatesan, R., & Li, C. (2009). Design and evaluation of a new localization scheme for underwater acoustic sensor networks. In: IEEE global telecommunications conference, 2009. GLOBECOM 2009. (pp. 1–5). IEEE.

  5. Bian, T., Venkatesan, R., & Li, C. (2010). An improved localization method using error probability distribution for underwater sensor networks. In: IEEE international conference on communications (ICC), 2010 (pp. 1–6). IEEE.

  6. Candy, J., & Sullivan, E. (1993). Sound velocity profile estimation: A system theoretic approach. Oceanic Engineering, IEEE Journal of 18(3), 240–252.

    Article  Google Scholar 

  7. Chan, F., & So, H. (2009). Efficient weighted multidimensional scaling for wireless sensor network localization. IEEE Transactions on Signal Processing, 57(11), 4548–4553

    Article  MathSciNet  Google Scholar 

  8. Chandrasekhar, V., Seah, W., Choo, Y., & Ee, H. (2006). Localization in underwater sensor networks: survey and challenges. In: Proceedings of the 1st ACM international workshop on underwater networks (pp. 33–40). New York: ACM.

  9. Chen, C., & Millero, F. (1977). Speed of sound in seawater at high pressures. The Journal of the Acoustical Society of America, 62, 1129.

    Article  Google Scholar 

  10. Cheng, W., Thaeler, A., Cheng, X., Liu, F., Lu, X., & Lu, Z. (2009). Time-synchronization free localization in large scale underwater acoustic sensor networks. In: 29th IEEE international conference on distributed computing systems workshops, 2009. ICDCS workshops’ 09 (pp. 80–87). IEEE.

  11. Cheng, X., Shu, H., Liang, Q., & Hung-Chang Du, D. (2008). Silent positioning in underwater acoustic sensor networks. IEEE Transactions on Vehicular Technology, 57(3), 1756–1766.

    Article  Google Scholar 

  12. Coppens, A. (1981). Simple equations for the speed of sound in neptunian waters. The Journal of the Acoustical Society of America, 69, 862.

    Article  Google Scholar 

  13. Costa, J., Patwari, N., & Hero III, A. (2006). Distributed weighted-multidimensional scaling for node localization in sensor networks. ACM Transactions on Sensor Networks (TOSN), 2(1), 39–64.

    Article  Google Scholar 

  14. Cox, T., & Cox, M. (1994). Multidimensional scaling. London: Chapman & Hall.

    MATH  Google Scholar 

  15. De Boor, C. (2001). A practical guide to splines, Vol. 27. New York: Springer.

    Google Scholar 

  16. De Silva, V., & Tenenbaum, J. (2004). Sparse multidimensional scaling using landmark points. Tech. rep., Technical report, Stanford University.

  17. Erol-Kantarci, M., Mouftah, H., & Oktug, S. (2010). Localization techniques for underwater acoustic sensor networks. IEEE Communications Magazine, 48(12), 152–158.

    Article  Google Scholar 

  18. Erol-Kantarci, M., Oktug, S., Vieira, L., & Gerla, M. (2011). Performance evaluation of distributed localization techniques for mobile underwater acoustic sensor networks. Ad Hoc Networks, 9(1), 61–72.

    Article  Google Scholar 

  19. Feng, C., Valaee, S., & Tan, Z. (2009). Localization of wireless sensors using compressive sensing for manifold learning. In: 2009 IEEE 20th international symposium on personal, indoor and mobile radio communications (pp. 2715–2719). IEEE.

  20. Garcia, J. (2005). Positioning of sensors in underwater acoustic networks. In: Proceedings of MTS/IEEE OCEANS, 2005 (pp. 2088–2092). IEEE.

  21. Isik, M., & Akan, O. (2009). A three dimensional localization algorithm for underwater acoustic sensor networks. IEEE Transactions on Wireless Communications, 8(9), 4457–4463.

    Article  Google Scholar 

  22. Ji, X., & Zha, H. (2004). Sensor positioning in wireless ad-hoc sensor networks using multidimensional scaling. In: INFOCOM 2004. Twenty-third annual joint conference of the IEEE computer and communications societies, Vol. 4 (pp. 2652–2661). IEEE.

  23. Kay, S. (1993). Fundamentals of statistical signal processing, Volume I: Estimation theory (v. 1). New Jersey: Prentice Hall.

    Google Scholar 

  24. King, P., Venkatesan, R., & Li, C. (2008). An improved communications model for underwater sensor networks. In: Global telecommunications conference, 2008. IEEE GLOBECOM 2008. IEEE (pp. 1–6). IEEE.

  25. Patwari, N., & Hero III, A. (2004). Manifold learning algorithms for localization in wireless sensor networks. In: IEEE international conference on, acoustics, speech, and signal processing, 2004. Proceedings (ICASSP’04), Vol. 3 (pp. iii–857). IEEE.

  26. Porter, M., & Bucker, H. (1987). Gaussian beam tracing for computing ocean acoustic fields. Journal of the Acoustical Society of America 82(4), 1349–1359.

    Article  Google Scholar 

  27. Shampine, L., Kierzenka, J., & Reichelt, M. (2000). Solving boundary value problems for ordinary differential equations in matlab with bvp4c. Tutorial notes.

  28. Shang, Y., & Ruml, W. (2004). Improved mds-based localization. In: INFOCOM 2004. Twenty-third annual joint conference of the IEEE computer and communications societies, vol. 4 (pp. 2640–2651). IEEE.

  29. Tan, H., Diamant, R., Seah, W., & Waldmeyer, M. (2011). A survey of techniques and challenges in underwater localization. Ocean Engineering, 38(14), 1663–1676.

    Article  Google Scholar 

  30. Tan, H., Gabor, A., Eu, Z., & Seah, W. (2010). A wide coverage positioning system (wps) for underwater localization. In: 2010 IEEE International Conference on Communications (ICC) (pp. 1–5). IEEE.

  31. Tan, X., & Li, J. (2010). Cooperative positioning in underwater sensor networks. IEEE Transactions on Signal Processing, 58(11), 5860–5871.

    Article  MathSciNet  Google Scholar 

  32. US Naval Academy: Fundamentals of naval weapons systems. http://www.fas.org/man/dod-101/navy/docs/fun/part08.htm.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Ameer.

Additional information

A part of this paper has been published in a conference. See Ameer, P M; Jacob, Lillykutty: Localization using stochastic proximity embedding for underwater Acoustic Sensor Networks, National Conference on Communications (NCC) 2012 (2012).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ameer, P.M., Jacob, L. Underwater localization using stochastic proximity embedding and multi-dimensional scaling. Wireless Netw 19, 1679–1690 (2013). https://doi.org/10.1007/s11276-013-0563-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-013-0563-3

Keywords

Navigation