Skip to main content
Log in

An experimental study of small multi-hop wireless networks using chirp spread spectrum

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Wireless mesh networks have emerged as a viable means of communicating between points that are not within wireless range of each other. There are still, however, a number of challenges involved in designing and implementing such wireless multi-hop networks, particularly with respect to optimising the user throughput. This paper presents some preliminary measurements from an experimental multi-hop wireless networking testbed that has been set up using nodes which utilise Chirp Spread Spectrum (CSS) technology. Multi-hop networks with linear topologies and a maximum of 5 static nodes have been considered. Numerous experiments, mostly indoors, have been performed in which parameters such as the network chain length, the packet size, the logical transmit channel and the transmit power of each node have been varied. The performance of a system with two parallel multi-hop chains was also investigated in which the chains operate simultaneously on either the same or different channels. The end-to-end throughput is observed to fall with increasing chain lengths, typically stabilising for longer chains at values approximately equal to 5–15 % of the single-hop throughput. As the size of the payload is increased, a corresponding linear increase in the throughput is observed. The user throughput also increases with increasing transmit powers at each of the nodes in the chain. However, a trade-off must be made if power and throughput are to be optimised simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Akyildiz, I. F., Wang, X., & Wang, W. (2005). Wireless mesh networks: A survey. Computer Networks, 47(4), 445–487. doi:10.1016/j.comnet.2004.12.001.

    Article  MATH  Google Scholar 

  2. Methley, S. (2009). Essentials of wireless mesh networking. Cambridge University Press, ISBN-13 978-0-521-87680-3.

  3. Jain, K., Padhye, J., Padmanabhan, V., & Qiu, L. (2003). Impact of interference on multi-hop wireless network performance. In Proceedings of the 9th annual international conference on mobile computing and networking (MobiCom 2003).

  4. Bhatia, R., & Kodialam, M. S. (2004). On power efficient communication over multi-hop wireless networks: Joint routing, scheduling and power control. In IEEE annual conference on computer communications (INFOCOM 2004), pp. 1457–1466.

  5. Ryu, J., Joo, C., Kwon, T. T., Shroff, N. B., & Choi, Y. (2010). Distributed SINR based scheduling algorithm for multi-hop wireless networks. In Proceedings of the 13th ACM international conference on modeling, analysis, and simulation of wireless and mobile systems (MSWiM’10), pp. 376–380.

  6. Chafekar, D., Kumar, V., Marathe, M. V., & Parthasarathy, S. (2008). Power efficient throughput maximization in multi-hop wireless networks. In Global telecommunications conference (GLOBECOM 2008), pp. 4895–4900.

  7. Wu, L., Fu, Y., & Dong, L. (2009). End-to-end throughput optimization in multi-hop wireless ad hoc networks. In 15th Asia-Pacific conference on communications (APCC 2009), pp. 40–43.

  8. Brar, G., Blough, D. M., & Santi, P. (2006). Computationally efficient scheduling with the physical interference model for throughput improvements in wireless mesh networks. Proceedings of the 12th annual international conference on mobile computing and networking (MobiCom’06).

  9. Ng, P. C., & Liew, S. C. (2007). Throughput analysis of IEEE802.11 multi-hop ad hoc networks. IEEE/ACM Transactions on Networking, 15(2), 309–322.

    Article  Google Scholar 

  10. Bhandari, V., & Vaidya, N. H. (2009). Channel and interface management in a heterogeneous multi-channel multi-radio wireless network. Technical report, University of Illinois at Urbana-Champaign.

  11. ns-2 website. http://www.isi.edu/nsnam/ns/. Accessed 24 November 2011.

  12. OPNET website. http://www.opnet.com/index.html. Accessed 24 November 2011.

  13. GloMoSim website. http://pcl.cs.ucla.edu/projects/glomosim/. Accessed 24 November 2011.

  14. Cavin, D., Sasson, Y., & Schiper, A. (2002). On the accuracy of manet simulators. Proceedings of the 2nd ACM international workshop on principles of mobile computing. ACM Press, pp. 38–43.

  15. Andel, T. R., & Yasinac, A. (2006). On the credibility of manet simulations. Computer, 39(7), 48–54. doi:10.1109/MC.2006.242.

    Article  Google Scholar 

  16. Nanotron website www-1. http://www.nanotron.com/EN/PR_nl_dev_kit.php. Accessed 27 November 2011.

  17. Nanotron website www-2. http://www.nanotron.com/EN/CO_techn-css.php. Accessed 27 November 2011.

  18. Nanotron website www-3. http://www.nanotron.com/EN/pdf/WP_CSS.pdf. Accessed 10 December 2011.

  19. Tsai, Y.-R., Chang, J.-F. (1994). The feasibility of combating multipath interference by chirp spread spectrum techniques over rayleigh and rician fading channels. Proceedings of IEEE third international symposium on spread spectrum techniques and applications (ISSSTA’94), IEEE, pp. 282–286. doi: 10.1109/ISSSTA.1994.379577.

  20. Springer, A., Gugler, W., Huemer, M., Reindl, L., Ruppel, C. C. W., & Weigel, R. (2000). Spread spectrum communication using chirp signals. Proceedings of EUROCOMM 2000, IEEE/AFCEA, pp. 166–170.

  21. Aguayo, D., Bicket, J., Biswas, S., Judd, G., & Morris, R. (2004). Link-level Measurements from an 802.11b Mesh Network. Proceedings of the 2004 conference on applications, technologies, architectures, and protocols for computer communications (SIGCOMM 2004), Portland, Oregon, USA.

  22. Raychaudhuri, D., Seskar, I., Ott, M., Ganu, S., Ramachandran, K., Kremo, H., Siracusa, R., Liu, H., & Singh, M. (2005). Overview of the ORBIT radio grid testbed for evaluation of next-generation wireless network protocols. Proceedings of the IEEE wireless communications and networking conference, New Orleans, Louisiana, USA, Vol. 3, pp. 1664–1669. doi: 10.1109/WCNC.2005.1424763.

  23. Ramachandran, K. N., Almeroth, K. C., & Belding-Royer, E. M. (2005). A framework for the management of large-scale wireless network Testbeds. Proceedings of the 1st workshop on wireless networks measurements (WiNMee 2005) (co-located with WiOpt 2005), Riva del Garda, Trentino, Italy.

  24. Raniwala, A., & Chiueh, T. -C. (2005). Architecture and algorithms for an IEEE 802.11-based multi-channel wireless mesh network. Proceedings of the 24th annual joint conference of the IEEE computer and communications societies (INFOCOM 2005), Miami, Florida, USA.

  25. De, P., Raniwala, A., Sharma, S., & Chiueh, T.-C. (2005). MiNT: a miniaturized network testbed for mobile wireless research. Proceedings of the 24th annual joint conference of the IEEE computer and communications societies (INFOCOM 2005), Miami, Florida, USA.

  26. Das, S. M., Pucha, H., Koutsonikolas, D., Hu, Y. C., & Peroulis, D. (2006). DMesh: incorporating practical directional antennas in multichannel wireless mesh networks. IEEE Journal on Selected Areas in Communications, 24(11), 2028–2039. doi:10.1109/JSAC.2006.881631.

    Article  Google Scholar 

  27. Shrestha, S. L., Lee, J., Lee, A., Lee, K., Lee, J., & Chong, S. (2007). An open wireless mesh testbed architecture with data collection and software distribution platform. In 3rd International conference on testbeds and research infrastructure for the development of networks and communities, 2007 (TridentCom 2007), Orlando, Florida, USA, pp. 1–10, doi: 10.1109/TRIDENTCOM.2007.4444728.

  28. Zimmermann, A., Schaffrath, D., Wenig, M., Hannemann, A., Güneş, M., & Makram, S. A. (2007). Performance evaluation of a hybrid testbed for wireless mesh networks. Proceedings of the 4th IEEE international conference on mobile ad-hoc and sensor systems (MASS 2007), Pisa, Italy.

  29. Blywis, B., Günes, M., Juraschek, F., & Schiller, J. H. (2010). Trends, advances, and challenges in testbed-based wireless mesh network research. Mobile Networks and Applications, 15(3), 315–329. doi:10.1007/s11036-010-0227-9.

    Article  Google Scholar 

  30. ElRakabawy, S. M., Frohn, S., & Lindemann, C. (2010). A scalable dual-radio wireless testbed for emulating mesh networks. Wireless Networks, 16(8), 2191–2207. doi:10.1007/s11276-010-0253-3.

    Article  Google Scholar 

  31. Dely, P., Castro, M., Soukhakian, S., Moldsvor, A., & Kassler, A. (2010). Practical considerations for channel assignment in wireless mesh networks 2010. 6th IEEE broadband wireless access workshop (co-located with GLOBECOM 2010), Miami, Florida, USA.

  32. Berlin Roof Net website. http://sarwiki.informatik.hu-berlin.de/BerlinRoofNet. Accessed 12 February 2012.

  33. Raman, B., & Chebrolu, K. (2007). Experiences in using WiFi for Rural Internet in India. IEEE Communications Magazine, 45(1), 104–110. doi:10.1109/MCOM.2007.284545.

    Article  Google Scholar 

  34. Ishmael, J., Bury, S., Pezaros, D., & Race, N. J. P. (2008). Deploying rural community wireless mesh networks. IEEE Internet Computing, 12(4), 22–29. doi:10.1109/MIC.2008.76.

    Article  Google Scholar 

  35. Draves, R., Padhye, J., & Zill, B. (2004). Comparison of routing metrics for static multi-hop wireless networks. Proceedings of the 2004 conference on Applications, technologies, architectures, and protocols for computer communications (SIGCOMM 2004), Portland, Oregon, USA.

  36. Bernardi, G., Buneman, P., & Marina, M. K. (2008). Tegola tiered mesh network testbed in rural Scotland. Proceedings of the 2008 ACM workshop on wireless networks and systems for developing regions (WiNS-DR) (held in conjunction with ACM MobiCom 2008), San Francisco, California, USA.

  37. Surana, S., Patra, R., Nedevschi, S., Ramos, M., Subramanian, L., Ben-David, Y., & Brewer, E. (2008). Beyond pilots: keeping rural wireless networks alive. Proceedings of the 5th USENIX symposium on networked systems design and implementation, (NSDI’08), San Francisco, California, USA, pp. 119–132.

  38. Chebrolu, K., Raman, B., & Sen, S. (2006). Long-Distance 802.11b links: Performance measurements and experience. 12th Annual international conference on mobile computing and networking (MobiCom 2006), Los Angeles, California, USA.

  39. Kiess, W., & Mauve, M. (2007). A survey on real-world implementations of mobile ad-hoc networks. Ad Hoc Networks, 5(3), 324–339. doi:10.1016/j.adhoc.2005.12.003.

    Article  Google Scholar 

  40. BelAir website. http://www.belairnetworks.com/. Accessed 24 November 2011.

  41. Cisco Systems website. http://www.cisco.com/en/US/prod/collateral/wireless/ps5679/ps6548/prod_brochure0900aecd8036884a.html. Accessed 24 November 2011.

  42. Firetide website. http://www.firetide.com/. Accessed 24 November 2011.

  43. Meraki website. http://meraki.com/. Accessed 10 February 2012.

  44. MeshDynamics website. http://www.meshdynamics.com/. Accessed 10 February 2012.

  45. Motorola website. http://www.motorola.com/business/v/index.jsp?vgnextoid=db1cbbaf1f6f6110VgnVCM1000008406b00aRCRD. Accessed 16 December 2011.

  46. Proxim Wireless website. http://proxim.com/products/enterprise-wireless-lan-wi-fi-mesh. Accessed 16 December 2011.

  47. Tropos Networks website. http://gridcom.tropos.com/index.php. Accessed 10 February 2012.

  48. Tegola website. http://tegola.org.uk/wiki/index.php/Main_Page. Accessed 10 February 2012.

  49. AirJaldi website. http://drupal.airjaldi.com/node/56. Accessed 10 February 2012.

  50. Sen, S., & Raman, B. (2007). Long distance wireless mesh network planning: Problem formulation and solution. The 16th annual international world wide web conference (WWW 2007), Banff, Alberta, Canada.

  51. Chebrolu, K., & Raman, B. (2007). FRACTEL: a fresh perspective on (Rural) mesh networks. ACM SIGCOMM workshop on networked systems for developing regions (NSDR 2007) (held with ACM SIGCOMM 2007), Kyoto, Japan.

  52. Raman, B. K. Chebrolu, D. Gokhale, & Sen, S. (2009). On the feasibility of the link abstraction in wireless mesh networks. IEEE/ACM Transactions on Networking, 17(2), pp. 528–541, doi: 10.1109/TNET.2009.2013706.

  53. Matthee, K., Mweemba, G., Pais, A., van Stam, G., & Rijken, M. (2007). Bringing Internet connectivity to rural Zambia using a collaborative approach. IEEE/ACM international conference on information and communication technologies and development (ICTD 2007), Bangalore, India.

  54. Backens, J., Song, M., & Engels, L. (2009). Rural wireless mesh networking in Africa: an experiential study. Proceedings of the ISCA 24th international conference on computers and their applications (CATA 2009), New Orleans, Louisiana, USA.

  55. Johnson, D. L., Belding, E. M., Almeroth, K., & van Stam, G. (2010). Internet usage and performance analysis of a rural wireless network in Macha, Zambia. 4th ACM workshop on networked systems for developing regions (NSDR 2010) (with MobiSys 2010), San Francisco, California, USA.

  56. Mpumalanga Mesh website. http://www.fmfi.org.za/wiki/index.php/Mpumalanga_Mesh:Project_Overview. Accessed 10 February 2012.

  57. Johnson, D. L. (2007). Evaluation of a single radio rural mesh network in South Africa. IEEE/ACM international conference on information and communication technologies and development (ICTD2007), Bangalore, India.

  58. CUWiN website. http://en.wikipedia.org/wiki/Champaign-Urbana_Community_Wireless_Network. Accessed 10 February 2012.

  59. Seattle Wireless website. http://www.seattlewireless.net/FrontPage. Accessed 10 February 2012.

  60. Freifunk website. http://wiki.freifunk.net/Kategorie:English. Accessed 10 February 2012.

  61. nanoLOC TRX Guide (2008). nanoLOC TRX User Guide, Version 2.00 (NA-06-0230-0385-2.00). Nanotron Technologies GmbH.

  62. nanoLOC DK Guide (2010). nanoLOC Development Kit 3.0, User Guide 3.0 (NA-06-0230-0402-3.0). Nanotron Technologies GmbH.

  63. Gast, M. (2002). 802.11 Wireless Networks: The Definitive Guide, O’Reilly and Associates, Inc. ISBN: 0-596-00183-5.

  64. Alicherry, M., Bhatia, R. & Li, L. E. (2005). Joint channel assignment and routing for throughput optimization in multiradio wireless mesh networks. In proc. ACM MOBICOM, Cologne, Germany.

  65. Fuxjager, P., Valerio, D. & Ricciato, F. (2007). The myth of non-overlapping channels: Interference measurements in IEEE 802.11. Wireless on Demand Network Systems and Services (WONS).

  66. Tan, W. L., Bialkowski, K., & Portmann, M. (2010). Evaluating adjacent channel interference in IEEE 802.11 Networks. 2010 IEEE 71st Vehicular Technology Conference (VTC2010-Spring).

  67. Valerio, D., Ricciato, F., & Fuxjaeger, P. (2008). On the Feasibility of IEEE 802.11 Multi-channel Multi-hop Mesh Networks. Computer Communications, 31(8), 1484–1496.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Erlebach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gunashekar, S.D., Das, A., Erlebach, T. et al. An experimental study of small multi-hop wireless networks using chirp spread spectrum. Wireless Netw 20, 89–103 (2014). https://doi.org/10.1007/s11276-013-0595-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-013-0595-8

Keywords

Navigation