Skip to main content
Log in

Multi-Spreader Routing for sparsely populated mobile ad hoc networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

We propose Multi-Spreader Routing, a store-carry-forward routing scheme for sparsely populated mobile ad hoc networks. Multi-Spreader Routing includes Epidemic Routing and Two-Hop Forwarding as special cases, and it can manage trade-off between message delivery delay and resource consumption effectively. We analyze various performance measures of Multi-Spreader Routing with a recovery scheme called VACCINE, and we evaluate its performance. Further, through simulation experiments with real mobility trace data, we demonstrate that Multi-Spreader Routing shows stable performance in various network environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Alresaini, M., Sathiamoorthy, M., Krishnamachari, B., & Neely, M. J. (2012). Backpressure with adaptive redundancy. In Proceedings of INFOCOM ’12 (pp. 2300–2308).

  2. Altman, E., Başar, T., & De Pellegrini, F. (2010). Optimal monotone forwarding policies in delay tolerant mobile ad-hoc networks. Performance Evaluation, 67(4), 299–317.

    Article  Google Scholar 

  3. Cao, Y., & Sun, Z. Routing in delay/disruption tolerant networks: A taxonomy, survey and challenges. IEEE Communications Surveys & Tutorials, to be published.

  4. Chaintreau, A., Hui, P., Crowcroft, J., Diot, C., Gass, R., & Scott, J. (2007). Impact of human mobility on opportunistic forwarding algorithms. IEEE Transactions on Mobile Computing, 6(6), 606–620.

    Article  Google Scholar 

  5. Conan, V., Leguay, J., & Friedman, T. (2008). Fixed point opportunistic routing in delay tolerant networks. IEEE Journal on Selected Areas in Communications, 26(5), 773–782.

    Article  Google Scholar 

  6. Daly, E. M., & Haahr, M. (2007). Social network analysis for routing in disconnected delay-tolerant manets. In Proceedings of ACM MobiHoc 07 (pp. 32–40).

  7. Dvir, A., & Vasilakos., A. V. (2010). Backpressure-based routing protocol for DTNs. In Proceedings of ACM SIGCOMM ’10 (pp. 405–406).

  8. Farrell, S., & Cahill, V. (2006). Delay- and disruption-tolerant networking. Boston: Artech House.

    Google Scholar 

  9. Gaito, S., Pagani, E., & Rossi, G. P. (2009). Fine-grained tracking of human mobility in dense scenarios. In Proceedings of sixth IEEE SECON conference (pp. 40–42).

  10. Gaito, S., Pagani, E., & Rossi, G. P. (2011). Strangers help friends to communicate in opportunistic networks. Computer Networks, 55(2), 374–385.

    Article  Google Scholar 

  11. Groenevelt, R. (2005). Stochastic models for ad hoc networks. INRIA: Ph.D Thesis.

  12. Groenevelt, R., Nain, P., & Koole, G. (2005). The message delay in mobile ad hoc networks. Performance Evaluation, 62(1), 210–228.

    Article  Google Scholar 

  13. Grossglauser, M., & Tse, D. N. C. (2002). Mobility increases the capacity of ad hoc wireless networks. IEEE/ACM Transactions on Networking, 10(4), 477–486.

    Article  Google Scholar 

  14. Haas, Z., & Small, T. (2006). A new networking model for biological applications of ad hoc sensor networks. IEEE/ACM Transactions on Networking, 14(1), 27–40.

    Article  Google Scholar 

  15. Contacts.Exp6.dat, [Online]. Available: http://crawdad.cs.dartmouth.edu/meta.php?name=cambridge/haggle/imote/infocom2006.

  16. Hui, P., Crowcroft, J., & Yoneki, E. (2008). Bubble rap: Social-based forwarding in delay tolerant networks. In Proceedings of ACM MobiHoc 08 (pp. 241–250).

  17. Jones, E. P. C., & Ward, P. A. S. (2006). Routing strategies for delay-tolerant networks. University of Waterloo. [Online]. Available: http://ccng.uwaterloo.ca/~pasward/Publications/dtn-routing-survey.pdf.

  18. Kulkarni, V. G. (1995). Modeling and analysis of stochastic systems. London: Chapman & Hall.

    MATH  Google Scholar 

  19. LeBrun, J., Chuah, C. N., Ghosal, D., & Zhang, M. (2005). Knowledge-based opportunistic forwarding in vehicular wireless ad hoc networks. In Proceedings of IEEE VTC 05-Spring (pp. 2289–2293).

  20. Lindgren, A., Doria, A., & Schelén, O. (2003) Probabilistic routing in intermittently connected networks. ACM SIGMOBILE Mobile Computing and Communications Review, 7(3), 19–20.

    Article  Google Scholar 

  21. Matsuda T., & Takine T. (2008) (pq)-epidemic routing for sparsely populated mobile ad hoc networks. IEEE Journal on Selected Areas in Communications, 26(5), 783–793.

    Article  Google Scholar 

  22. pmtr.txt, [Online]. Available: http://crawdad.cs.dartmouth.edu/unimi/pmtr.

  23. Nelson, S. C., Bakht, M., & Kravets, R. (2009). Encounter-based routing in DTNs. In Proceedings of INFOCOM ’09 (pp. 846–854).

  24. Singh, C., Kumar, A., & Sundaresan, R. (2010). Delay and energy optimal two-hop relaying in delay tolerant networks. In Proceedings of WiOpt2010: Modeling and optimization in mobile, ad hoc and wireless networks (pp. 256–265).

  25. Spyropoulos, T., Psounis, K., & Raghavendra, C. (2005). Spray and wait: An efficient routing scheme for intermittently connected mobile networks. In Proceedings of SIGCOMM 2005 workshops (pp. 252–259).

  26. Spyropoulos, T., Psounis, K., & Raghavendra, C. (2007). Spray and focus: Efficient mobility-assisted routing for heterogeneous and correlated mobility. In Proceedings of PerComW ’07 (pp. 79–85).

  27. Spyropoulos, T., Psounis, K., & Raghavendra, C. (2008). Efficient routing in intermittently connected mobile networks: The single-copy case. IEEE/ACM Transactions on Networking, 16(1), 63–76.

    Article  Google Scholar 

  28. Spyropoulos, T., Psounis, K., & Raghavendra, C. (2008). Efficient routing in intermittently connected mobile networks: The multiple-copy case. IEEE/ACM Transactions on Networking, 16(1), 77–90.

    Article  Google Scholar 

  29. Spyropoulos, T., Rais, R. N. B., Thierry, T., Obraczka, K., & Vasilakos, A. V. (2010). Routing for disruption tolerant networks: Taxonomy and design. Wireless Networks, 16(8), 2349–2370.

    Article  Google Scholar 

  30. Vahdat, A., & Becker, D. (2000). Epidemic routing for partially-connected ad hoc networks. Duke Technical Report, CS-2000-06.

  31. Vasilakos, A. V., Zhang, Z., & Spyropoulos, T. (2012). Delay tolerant networks: Protocols and applications. New York: CRC Press.

    Google Scholar 

  32. Yuan, Q., Cardei, I., & Wu, J. (2009). Predict and relay: An efficient routing in disruption-tolerant networks. In Proceedings of ACM MobiHoc 09 (pp. 95–104).

  33. Zhang, X., Neglia, G., Kurose, J., & Towsley, D. (2007). Performance modeling of epidemic routing. Computer Networks, 51(10), 2867–2891.

    Article  MATH  Google Scholar 

  34. Zhang, Z. (2006). Routing in intermittently connected mobile ad hoc networks and delay tolerant networks: Overview and challenges. IEEE Communications Surveys & Tutorials, 8(1), 24–37.

    Article  Google Scholar 

  35. Zeng, Y., Xiang, K., Li, D., & Vasilakos, A. V. (2013). Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Networks, 19(2), 161–173.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomotaka Kimura.

Appendices

Appendix 1: Transition rates from state (xk, 0)

This appendix considers meetings of two nodes in state (\({\user2{x}},k,0\)).

  1. 1.

    A spreader with counter value c j (\(j=1,2,\ldots,n(P)-1\)) encounters a vacant node: The vacant node becomes a spreader with counter value ⌊c j /2⌋. At the same time, the counter value of the spreader is updated to be \(\lceil c_j/2 \rceil.\) Therefore the state transition from state (\({\user2{x}},k,0\)) to state (\({\user2{x}}_j^{\prime},k+1,0\)) happens, where \({\user2{x}}_j^{\prime}\) is given in (3). Because there are x j spreaders with counter value c j and N − k vacant nodes in state (\({\user2{x}},k,0\)), the transition rate from state (\({\user2{x}},k,0\)) to state (\({\user2{x}}_j^{\prime},k+1,0\)) is given by (N − k) x j λ.

  2. 2.

    A spreader with counter value c = 1 encounters a vacant node: The vacant node becomes a relay node. Therefore the state transition from state (\({\user2{x}},k,0\)) to state (\({\user2{x}},k+1,0\)) happens and its transition rate is given by (N − k) x n(P) λ.

  3. 3.

    A spreader with counter value c j (\(j=1,2,\ldots,n(P)-1\)) encounters a relay node: As stated in Sect. 3.1, the relay node becomes a spreader with counter value ⌊c j /2⌋. At the same time, the counter value of the spreader is updated to be \(\lceil c_j/2\rceil.\) Thus the state transition from state (\({\user2{x}},k,0\)) to state (\({\user2{x}}_j^{\prime},k,0\)) happens, where \({\user2{x}}_j^{\prime}\) is given in (3). There are \(N_R^{[{\user2{x}},k]}\) relay nodes in state (\({\user2{x}},k,0\)), where \(N_R^{[{\user2{x}},k]}\) is given in (2). Thus the transition rate from state (\({\user2{x}},k,0\)) to state (\({\user2{x}}_j^{\prime},k,0\)) is given by \(N_R^{[{\user2{x}},k]} x_j \lambda.\)

  4. 4.

    A spreader encounters the destination node: As soon as the spreader forwards the message to the destination node, both nodes generate the corresponding anti-packets. Therefore, when the counter value of the message that the spreader carries is equal to c j (\(j=1,2,\ldots,n(P)\)), the state transition from state (\({\user2{x}},k,0\)) to state (\({\user2{x}} - {\user2{e}}_j,k-1,2\)) happens. Because there is only one destination node, the transition rate from state (\({\user2{x}},k,0\)) to state (\({\user2{x}} - {\user2{e}}_j,k-1,2\)) is given by x j λ.

  5. 5.

    A relay node encounters the destination node: As soon as the relay node forwards the message copy to the destination node, both nodes generate the corresponding anti-packets. Therefore the state transition from state (\({\user2{x}},k,0\)) to state (\({\user2{x}},k-1,2\)) happens, whose transition rate is given by \(N_R^{[{\user2{x}},k]} \lambda.\)

  6. 6.

    Other cases: The numbers of spreaders and message copies remain the same, and therefore the state transition does not occur.

Appendix 2: Transition rates from state (xkm)

This appendix considers meetings of two nodes in state \(({\user2{x}},k,m)\) (m ≥ 2).

  1. 1.

    A spreader with counter value c j (\(j=1,2,\cdots,n(P)-1\)) encounters a vacant node: The vacant node becomes a spreader with counter value ⌊c j /2⌋. At the same time, the counter value of the spreader is updated to be \(\lceil c_j/2 \rceil.\) Therefore the state transition from state (\({\user2{x}},k,m\)) to state (\({\user2{x}}_j^{\prime},k+1,m\)) happens, where \({\user2{x}}_j^{\prime}\) is given in (3), and its transition rate is given by (N + 1 − k − m) x j λ because there are x j spreaders with counter value c j and N + 1 − k − m vacant nodes in state (\({\user2{x}},k,m\)).

  2. 2.

    A spreader with counter value c n(P) (=1) encounters a vacant node: The vacant node becomes a relay node. Therefore the state transition from state (\({\user2{x}},k,m\)) to state (\({\user2{x}},k+1,m\)) happens, whose transition rate is given by (N + 1 − k − m) x n(P) λ.

  3. 3.

    A spreader with counter value c j (\(j=1,2,\cdots,n(P)-1\)) encounters a relay node: The relay node becomes a spreader with counter value ⌊c j /2⌋. At the same time, the counter value of the spreader is updated to be \(\lceil c_j/2 \rceil.\) Therefore the state transition from state \(({\user2{x}},k,m)\) to state \(({\user2{x}}_j^{\prime},k,m)\) happens. Because the number of relay nodes in state \(({\user2{x}},k,m)\) is given by \(N_R^{[{\user2{x}},k]}\) in (2), the transition rate is given by \(N_R^{[{\user2{x}},k]} x_j \lambda.\)

  4. 4

    A spreader encounters a node with an anti-packet: The spreader receives an anti-packet and deletes the message. Therefore, when the spreader has the message with counter value c j (\(j=1,2,\cdots,n(P)\)), the state transition from state (\({\user2{x}},k,m\)) to state (\({\user2{x}} - {\user2{e}}_j,k-1,m+1\)) happens, and its transition rate is given by m x j λ because there are m nodes with anti-packets.

  5. 5.

    A relay node encounters a node with an anti-packet: The relay node receives an anti-packet and deletes the message copy. Thus the state transition from state (\({\user2{x}},k,m\)) to state (\({\user2{x}},k-1,m+1\)) happens and its transition rate is given by \(m N_R^{[{\user2{x}},k]} \lambda.\)

  6. 6

    A node with an anti-packet encounters a vacant node: The vacant node receives an anti-packet. Therefore the state transitions from state (\({\user2{x}},k,m\)) to state (\({\user2{x}},k,m+1\)) happens, and its transition rate is given by m (N + 1 − k − m)λ.

  7. 7

    Other cases: The numbers of spreaders, message copies, and anti-packets remain the same, and therefore the state transition does not occur.

Appendix 3: Mean length of the lifetime of a message

We define \(T_E({\user2{x}},k,m)\) (\(m=0,2,3,\ldots,N+1,\) \({({\user2{x}},k,m) \in {\mathcal{S}}_P(m)}\)) as

$$T_E({\user2{x}},k,m) = \hbox{E}[T_E \mid {\user2{Z}}(0)= ({\user2{x}},k,m)],$$

where T E is defined in (7). By definition, \(\hbox{E}[T_E] = T_E({\user2{e}}_1,1,0).\) It follows from Table 2 that \(T_E({\user2{x}},k,0)\) (\(N_S^{[{\user2{x}}]} \le k \le N\)) satisfies

$$\begin{aligned} T_E({\user2{x}},k,0)&= \frac{1} {\lambda_1({\user2{x}},k,0)} + \sum^{n(P)-1}_{j=1} \frac{ x_j N_R^{[{\user2{x}},k]} \lambda} { \lambda_1({\user2{x}},k,0)} T_E({\user2{x}}_j^{\prime},k,0) \\ & \quad + \sum^{n(P)-1}_{j=1} { \frac{( N - k ) x_j \lambda} {\lambda_1({\user2{x}},k,0)}} T_E({\user2{x}}_j^{\prime},k+1,0) \\ & \quad + \sum^{n(P)-1}_{j=1} \frac{ x_j \lambda} { \lambda_1({\user2{x}},k,0)} T_E({\user2{x}} - {\user2{e}}_j, k - 1, 2) \\ & \quad + {\frac{(N-k) x_{n(P)} \lambda} { \lambda_1 ({\user2{x}},k,0)}} T_E({\user2{x}},k+1,0) \\ & \quad + {\frac{x_{n(P)} \lambda} { \lambda_1 ({\user2{x}},k,0)}} T_E({\user2{x}} - {\user2{e}}_{n(P)}, k - 1, 2) \\ & \quad + \frac{N_R^{[{\user2{x}},k]} \lambda}{\lambda_1 ({\user2{x}},k,0)} T_E({\user2{x}}, k-1, 2),\\ \end{aligned} $$
(9)

where \(T_E({\user2{x}},N+1,0) = T_E({\user2{x}},0,0) = T_E({\bf 0},k,0) = 0\).

Also, it follows from Table 3 that for m ≥ 2, the sum \(\lambda_2({\user2{x}},k,m)\) (\({({\user2{x}},k,m) \in {\mathcal{S}}_P(m)}\)) of transition rates from state \(({\user2{x}},k,m)\) is given by

$$\begin{aligned} \lambda_2({{\user2{x}},k,m}) &= \sum^{n(P)-1}_{j=1} ( N_R^{[{\user2{x}},k]}+ N - k + 1) x_j \lambda \\ &\quad + ( N - k + 1) x_{n(P)} \lambda \\ & \quad + m N_R^{[{\user2{x}},k]} \lambda + m ( N + 1 - k - m ) \lambda. \\ \end{aligned}$$

Therefore \(T_E({\user2{x}},k,m)\) (\(N_S^{[{\user2{x}}]} \le k \le N - 1, 2 \le m \le N, k+m \le N+1\)) satisfies

$$\begin{aligned} &{T_E({\user2{x}},k,m)} \; \\ &=\frac{1}{\lambda_2({\user2{x}},k,m)} + \sum^{n(P)-1}_{j=1} \frac{N_R^{[{\user2{x}},k]} x_j \lambda}{\lambda_2({\user2{x}},k,m)} T_E({\user2{x}}_j^{\prime}, k,m) \\ & \quad+ \sum^{n(P)-1}_{j=1} \frac{( N + 1 - k - m) x_j \lambda}{\lambda_2({\user2{x}},k,m)} T_E({\user2{x}}_j^{\prime},k+1,m) \\ & \quad + \sum^{n(P)-1}_{j=1} \frac{m x_j \lambda}{\lambda_2({\user2{x}},k,m)} T_E({\user2{x}}-{\user2{e}}_j, k-1, m+1) \\ & \quad + \frac{(N+1-k-m) x_{n(P)} \lambda}{\lambda_2({\user2{x}},k,m)} T_E({\user2{x}}, k+1, m) \\ &\quad + {\frac{m x_{n(P)}\lambda} {\lambda_2({\user2{x}},k,m)}} T_E({\user2{x}} - {\user2{e}}_{n(P)}, k-1, m + 1 ) \\ & \quad + \frac{m N_R^{[{\user2{x}},k]} \lambda}{\lambda_2({\user2{x}},k,m)} T_E({\user2{x}}, k-1, m+1) \\ & \quad + { \frac{m ( N + 1 - k - m ) \lambda} {\lambda_2({\user2{x}},k,m)}} T_E({\user2{x}}, k, m + 1 ),\\ \end{aligned} $$
(10)

where \(T_E({\user2{x}},0,m) = T_E({\user2{x}},N+2-m,m) = 0.\) Recall that, for each m (\(m=0,2,3,\ldots,N+1\)), states \({{\user2{x}} \in {\mathcal{X}}_P(m)}\) of spreaders are labeled in ascending order of \(N_S^{[{\user2{x}}]}.\) For a given m, we denote the lth (\({l=1,2,\ldots,|{\mathcal{X}}_P(m)|}\)) element in \({{\mathcal{X}}_P(m)}\) by \({\user2{x}}^{[l]} = (x_1^{[l]}, x_2^{[l]}, \ldots, x_{n(P)}^{[l]}).\) As a result, we can compute \(\hbox{E}[T_E]=T_E({\user2{e}}_1,1,0)\) by the backward recursive procedure given in Fig. 23.

Fig. 23
figure 23

Backward recursion to compute E[T E ]

Appendix 4: Mean accumulated number of messages in the system

The offered load O L and the mean number E[N I ] of transmissions of information about the message are given in terms of \(R({\user2{e}}_1,1,0),\) which can be computed as follows. We define \(R({\user2{x}},k,m)\) (\(m=0,2,3,\ldots,N+1,\) \(({\user2{x}},k,m) \in {\mathcal{S}}_P(m))\) as

$$R({\user2{x}},k,m) = \hbox{E}\left[\int\limits_0^{T_E} K(t) dt \mid {\user2{Z}}(0) = ({\user2{x}},k,m) \right].$$

Similar to \(T_E({\user2{x}},k,m),\) it is easy to see that \(R({\user2{x}},k,0)\) (\(N_S^{[{\user2{x}}]} \le k \le N\)) satisfies

$$\begin{aligned} R({\user2{x}},k,0) &= \frac{k} {\lambda_1({\user2{x}},k,0)} + \sum^{n(P)-1}_{j=1} \frac{N_R^{[{\user2{x}},k]} x_j \lambda} { \lambda_1({\user2{x}},k,0)} R({\user2{x}}_j^{\prime},k,0) \\ & \quad + \sum^{n(P)-1}_{j=1} { \frac{( N - k ) x_j \lambda} {\lambda_1({\user2{x}},k,0)}} R({\user2{x}}_j^{\prime},k+1,0) \\ & \quad + \sum^{n(P)-1}_{j=1} \frac{x_j \lambda} { \lambda_1({\user2{x}},k,0)} R({\user2{x}} - {\user2{e}}_j, k - 1, 2) \\ & \quad + {\frac{(N-k) x_{n(P)} \lambda} { \lambda_1 ({\user2{x}},k,0)}} R({\user2{x}},k+1,0) \\ & \quad + {\frac{x_{n(P)} \lambda} { \lambda_1 ({\user2{x}},k,0)}} R({\user2{x}} - {\user2{e}}_{n(P)}, k - 1, 2) \\ & \quad + \frac{N_R^{[{\user2{x}},k]} \lambda}{\lambda_1 ({\user2{x}},k,0)} R({\user2{x}}, k-1, 2), \\ \end{aligned}$$

where \(R({\user2{x}},N+1,0) = R({\user2{x}},0,0) = R({\bf 0},k,0) = 0\). Also, \(R({\user2{x}},k,m)\) (\(N_S^{[{\user2{x}}]} \leq k \leq N-1,\) 2 ≤ m ≤ N, k + m ≤ N + 1) satisfies

$$\begin{aligned} &{R({\user2{x}},k,m)} \\ &\quad= \frac{k}{\lambda_2({\user2{x}},k,m)} + \sum^{n(P)-1}_{j=1} { \frac{N_R^{[{\user2{x}},k]} x_j \lambda} {\lambda_2({\user2{x}},k,m)}} R({\user2{x}}_j^{\prime},k,m) \\ &\quad + \sum^{n(P)-1}_{j=1} { \frac{( N + 1 - k - m) x_j \lambda} {\lambda_2({\user2{x}},k,m)}} R({\user2{x}}_j^{\prime},k+1,m) \\ &\quad + \sum^{n(P)-1}_{j=1} { \frac{m x_j \lambda} {\lambda_2({\user2{x}},k,m)}} R({\user2{x}} - {\user2{e}}_j, k - 1, m + 1) \\ & \quad+ { \frac{( N + 1 - k - m ) x_{n(P)} \lambda} {\lambda_2({\user2{x}},k,m)}} R({\user2{x}}, k + 1, m ) \\ & \quad + { \frac{m x_{n(P)} \lambda} {\lambda_2({\user2{x}},k,m)}} R({\user2{x}} - {\user2{e}}_{n(P)}, k-1, m + 1 ) \\ & \quad + { \frac{m N_R^{[{\user2{x}},k]} \lambda} {\lambda_2({\user2{x}},k,m)}} R({\user2{x}}, k-1, m + 1 ) \\ & \quad + { \frac{m ( N + 1 - k - m ) \lambda} {\lambda_2({\user2{x}},k,m)}} R({\user2{x}}, k, m + 1 ), \\ \end{aligned}$$

where \(R({\user2{x}},0,m) = R({\user2{x}},N+2-m,m) =0.\) Therefore \(R({\user2{e}}_1,1,0)\) can be computed by the backward recursion in Fig. 23, where \(T_E({\user2{x}}^{[l]}, k, m)\) is replaced by \(R({\user2{x}}^{[l]}, k, m)\).

Appendix 5: Mean number of message copy transmissions

Let N D denote the accumulated number of message copy transmissions till extinction. We then define \(N_D({\user2{x}},k,m)\) (\({m=0,2,3,\ldots,N+1,\,({\user2{x}},k,m) \in {\mathcal{S}}_P(m)}\)) as

$$N_D({\user2{x}},k,m) = \hbox{E}[N_D \mid {\user2{Z}}(0)=({\user2{x}},k,m)].$$

It then follows from Table 2 that \(N_D({\user2{x}},k,0)\) (\(N_S^{[{\user2{x}}]} \le k \le N\)) satisfies

$$\begin{aligned} &{N_D({\user2{x}},k,0)} \; \\ &\quad= \sum^{n(P)-1}_{j=1} \frac{N_R^{[{\user2{x}},k]} x_j \lambda} { \lambda_1({\user2{x}},k,0)} N_D({\user2{x}}_j^{\prime},k,0) \\ &\quad + \sum^{n(P)-1}_{j=1} { \frac{( N - k ) x_j \lambda} {\lambda_1({\user2{x}},k,0)}} \{ 1 + N_D({\user2{x}}_j^{\prime}, k+1,0) \} \\ & \quad + \sum^{n(P)-1}_{j=1} \frac{ x_j \lambda} { \lambda_1({\user2{x}},k,0)} N_D({\user2{x}} - {\user2{e}}_j, k-1, 2)\\ & \quad + {\frac{(N-k) x_{n(P)} \lambda} { \lambda_1 ({\user2{x}},k,0)}} \{ 1 + N_D({\user2{x}},k+1,0) \} \\ & \quad + {\frac{x_{n(P)} \lambda} { \lambda_1 ({\user2{x}},k,0)}} N_D({\user2{x}} - {\user2{e}}_{n(P)}, k-1, 2) \\ & \quad + \frac{N_R^{[{\user2{x}},k]} \lambda}{\lambda_1 ({\user2{x}},k,0)} N_D({\user2{x}}, k-1, 2), \\ \end{aligned}$$

where \(N_D({\user2{x}},N+1,0) = N_D({\user2{x}},0,0) = N_D({\bf 0},k,0) = 0\). Also, it follows from Table 3 that \(N_D({\user2{x}},k,m)\) (\(N_S^{[{\user2{x}}]} \le k \le N - 1, 2 \le m \le N, k+m \le N+1\)) satisfies

$$\begin{aligned} &{N_D({\user2{x}},k,m)}\\ &\quad= \sum^{n(P)-1}_{j=1} \frac{N_R^{[{\user2{x}},k]} x_j \lambda}{\lambda_2({\user2{x}},k,m)} N_D({\user2{x}}_j^{\prime},k,m) \\ & \quad + \sum^{n(P)-1}_{j=1} \frac{( N + 1 - k - m) x_j \lambda}{\lambda_2({\user2{x}},k,m)} \{ 1 + N_D({\user2{x}}_j^{\prime}, k+1,m) \} \\ & \quad + \sum^{n(P)-1}_{j=1} \frac{m x_j \lambda}{\lambda_2({\user2{x}},k,m)} N_D({\user2{x}}-{\user2{e}}_j, k-1, m+1) \\ & \quad + \frac{(N+1-k-m) x_{n(P)} \lambda}{\lambda_2({\user2{x}},k,m)} \{ 1 + N_D({\user2{x}}, k+1, m) \} \\ & \quad + {\frac{m x_{n(P)} \lambda} {\lambda_2({\user2{x}},k,m)}} N_D({\user2{x}} - {\user2{e}}_{n(P)}, k-1, m + 1 ) \\ & \quad + \frac{m N_R^{[{\user2{x}},k]} \lambda}{\lambda_2({\user2{x}},k,m)} N_D({\user2{x}}, k-1, m+1) \\ & \quad + {\frac{m ( N + 1 - k - m ) \lambda} {\lambda_2({\user2{x}},k,m)}} N_D({\user2{x}}, k, m + 1 ), \\ \end{aligned}$$

where \(N_D({\user2{x}},0,m) = N_D({\user2{x}},N+2-m,m) = 0.\) Therefore \(\hbox{E}[N_D] = N_D({\user2{e}}_1,1,0)\) can be computed by the backward recursive procedure in Fig. 23, where \(T_E({\user2{x}}^{[l]},k,m)\) is replaced by \(N_D({\user2{x}}^{[l]},k,m)\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimura, T., Matsuda, T. & Takine, T. Multi-Spreader Routing for sparsely populated mobile ad hoc networks. Wireless Netw 20, 155–175 (2014). https://doi.org/10.1007/s11276-013-0597-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-013-0597-6

Keywords

Navigation