Skip to main content
Log in

Delay and capacity in MANETs under random walk mobility model

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The closed-form results for delay and capacity in mobile ad hoc networks are important for the performance analysis of different transmission protocols. Most existing works focus on independent and identically distributed mobility model, which is always regarded as an idealized global model. In this paper, we extend the investigation to the random walk model, which characterizes practical situations more accurately. Some local movements cause a series of complicated probabilistic problem, we develop a method to calculate the meeting probability between two randomly selected nodes under random walk mobility model. Targeting at the most commonly used routing schemes which are modeled by 2HR-f algorithm, we obtain the closed-form solutions for delay and capacity, where the wireless interference and medium access contention among nodes are considered. Extensive simulations demonstrate the accuracy of our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Comaniciu, C., & Poor, H. V. (2006). On the capacity of mobile ad hoc networks with delay constraints. IEEE Transactions on Wireless Communications, 5(8), 2061–2071.

    Article  Google Scholar 

  2. Grossglauser, M., & Tse, D. N. (2001). Mobility increases the capacity of ad hoc wireless networks. In Proceedings of INFOCOM’01, Anchorage, Alaska, USA.

  3. Liu, J. J., Jiang, X. H., Nishiyama, H., & Kato, N. (2011). Delay and capacity in ad hoc mobile networks with f-cast relay algorithms. IEEE Transactions on Wireless Communications, 10(8), 2738–2751.

    Article  Google Scholar 

  4. Einstein, A. (1956). Investigations on the theory of the Brownian Movement, Mineola, NY: Dover Publications.

    MATH  Google Scholar 

  5. Johnson, D. B., & Maltz, D. A. (1996). Dynamic Source Routing in Ad Hoc Wireless Networks. In Imielinski & Korth, (Eds.), Mobile Computing, 353 Kluwer Academic Publishers, Dordrecht.

  6. Bettstetter, C. (2001). Mobility modeling in wireless networks: Categorization, smooth movement, border effects. ACM Mobile Computing and Communications Review, 5(3), 55–67.

    Article  Google Scholar 

  7. Cai, H., & Eun, D. Y. (2009). Crossing over the bounded domain: From exponential to power-law intermeeting time in mobile ad hoc networks. IEEE/ACM Transactions on Networking, 17(5), 1578–1591.

    Article  Google Scholar 

  8. La, R. J. (2010). Distributional convergence of intermeeting times under the generalized hybrid random walk mobility model. IEEE Transactions on Mobile Computing, 9(9), 1201–1211.

    Article  Google Scholar 

  9. Spyropoulos, T., Psounis, K., & Raghavendra, C. S. (2008). Efficient routing in intermittently connected mobile networks: The single-copy case. IEEE/ACM Transactions on Networking, 16(1), 63–76.

    Article  Google Scholar 

  10. Spyropoulos, T., Psounis, K., & Raghavendra, C. S. (2008). Efficient routing in intermittently connected mobile networks: The multiple-copy case. IEEE/ACM Transactions on Networking, 16(1), 77–90.

    Article  Google Scholar 

  11. Gupta, P., & Kumar, P. R. (2000). The capacity of wireless networks. IEEE Transactions on Information Theory, 46(2), 388–404.

    Article  MATH  MathSciNet  Google Scholar 

  12. Neely, M. J., & Modiano, E. (2005). Capacity and delay tradeoffs for ad hoc mobile networks. IEEE Transactions on Information Theory, 51(6), 1917–1937.

    Article  MathSciNet  Google Scholar 

  13. Toumpis, S., & Goldsmith, A. J. (2004). Large wireless networks under fading, mobility, and delay constraints. In Proceedings of INFOCOM’04, Hong Kong, China.

  14. Lin, X. J., & Ness, B. S. (2004). Towards achieving the maximum capacity in large mobile wireless networks under delay constraints. Journal of Communication and Networks, 6(4), 352–361.

    Google Scholar 

  15. Wang, X. B., Huang, W. T., Wang, S. X., Zhang, J. B., & Hu, C. H. (2011). Delay and capacity tradeoff analysis for motioncast. IEEE/ACM Transactions on Networking, 19(5), 1354–1367.

    Article  Google Scholar 

  16. Gamal, A., Mammen, J., Prabhakar, B., & Shah, D. (2004). Throughput-delay trade-off in wireless networks. In Proceedings of INFOCOM’04, Hong Kong, China.

  17. Lin, X., Sharma, G., Mazumdar, R. R., & Shroff, N. B. (2006). Degenerate delay-capacity tradeoffs in ad-hoc networks with brownian mobility. IEEE Transactions on Information Theory, 52(6), 2777–2784.

    Article  MathSciNet  Google Scholar 

  18. El Gamal, A., Mammen, J., Prabhakar, B., & Shah, D. (2006). Optimal throughput-delay scaling in wireless networks—part i: The fluid model. IEEE Transactions on Information Theory, 52(6), 2568–2592.

    Article  MathSciNet  Google Scholar 

  19. El Gamal, A., Mammen, J., Prabhakar, B., & Shah, D. (2006). Optimal throughput-delay scaling in wireless networks—part ii: Constant-size packets. IEEE Transactions on Information Theory, 52(11), 5111–5116.

    Article  MathSciNet  Google Scholar 

  20. Mammen, J., & Shah, D. (2007). Throughput and delay in random wireless networks with restricted mobility. IEEE Transactions on Information Theory, 53(3), 1108–1116.

    Article  MathSciNet  Google Scholar 

  21. Gaurav, S., Ravi, M., & Ness, S. (2007). Delay and capacity trade-offs in mobile ad hoc networks: A global perspective. IEEE/ACM Transactions on Networking, 15(5), 981–992.

    Article  Google Scholar 

  22. Wang, C., Li, X. Y., Tang, S. J., Jiang, C. J., & Liu, Y. H. (2010). Capacity and delay in mobile ad hoc networks under gaussian channel model. ACM SIGMOBILE Mobile Computing and Communications Review, 14(3), 22–24.

    Article  Google Scholar 

  23. Zhuo, S., & Ying, L. (2010). On delay constrained multicast capacity of large scale mobile ad-hoc networks. in Proceedings of INFOCOM’10, San Diego, CA, USA.

  24. Ying, L., Yang, S. C., & Srikant, R. (2008). Optimal delay—throughput tradeoffs in mobile ad hoc networks. IEEE Transactions on Information Theory, 54(9), 4119–4143.

    Article  MathSciNet  Google Scholar 

  25. Nikhil, B., & Liu, Z. (2003). Capacity, delay and mobility in wireless ad-hoc networks. In Proceedings of INFOCOM’03, San Franciso, CA, USA.

  26. Garetto, M., Giaccone, P., & Leonardi, E. (2009). Capacity scaling in ad hoc networks with heterogeneous mobile nodes: The super-critical regime. IEEE/ACM Transactions on Networking, 17(5), 1522–1535.

    Article  Google Scholar 

  27. Garetto, M., Giaccone, P., & Leonardi, E. (2009). Capacity scaling in ad hoc networks with heterogeneous mobile nodes: The subcritical regime. IEEE/ACM Transactions on Networking, 17(5), 1888–1901.

    Article  Google Scholar 

  28. Garetto, M., & Leonardi, E. (2010). Restricted mobility improves delay-throughput tradeoffs in mobile ad hoc networks. IEEE Transactions on Information Theory, 56(10), 5016–5029.

    Article  MathSciNet  Google Scholar 

  29. Ciullo, D., Martina, V., Garetto, M., & Leonardi, E. (2010). Impact of correlated mobility on delay-throughput performance in mobile ad-hoc networks. In Proceedings of INFOCOM’10, San Diego, CA, USA.

  30. Lee, Y., Kim, Y., Chong, S., Rhee, I., & Yi, Y. (2011). Delay-capacity tradeoffs for mobile networks with levy walks and levy flights. In Proceedings of INFOCOM’11, Shanghai, China.

  31. Li, X. Y.(2009). Multicast capacity of wireless ad hoc networks. IEEE/ACM Transactions on Networking, 17(3), 950–961.

    Article  Google Scholar 

  32. Keshavarz-Haddad, A., Ribeiro, V., & Riedi, R. (2006). Broadcast capacity in multihop wireless networks. In Proceedings of Mobicom’06, Los Angeles, CA, USA.

  33. Tavli, B. (2006). Broadcast capacity of wireless networks. IEEE Communications Letters, 10(2), 68–69.

    Article  Google Scholar 

  34. Li, X. Y., Liu, Y. H., Li, S., & Tang, S. J. (2010). Multicast capacity of wireless ad hoc networks under gaussian channel model. IEEE/ACM Transactions on Networking, 18(4), 1145–1157.

    Article  Google Scholar 

  35. Wang, Y., Chu, X. Y., Wang, X. B., & Cheng, Y. (2011). Optimal multicast capacity and delay tradeoffs in manets: A global perspective. In Proceedings of INFOCOM’11, Shanghai, China.

  36. Li, P., Fang, Y., & Li, J. (2010). Throughput, delay, and mobility in wireless ad-hoc networks. In Proceedings of INFOCOM’10, San Diego, CA, USA.

  37. Cai. Y., Wang, X., & Zhang, Y. (2012). The analysis of mobility models in MANETs with two-hop relay algorithm. In Proceedings of INCoS’12, Bucharest, Romania.

  38. Grinstead, C. M., & Snell, J. L. (1997). Introduction to Probability, 2nd Revised ed. Providence, RI: American Mathematical Society.

    Google Scholar 

Download references

Acknowledgments

This work is supported by International Visiting Scholar Program of Beijing municipality in “Developing Education Through Human Resource Development” and the Opening Project of Beijing Key Laboratory of Internet Culture and Digital Dissemination Research under Grant No. ICDD201206, ICDD201207.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Cai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, Y., Wang, X., Li, Z. et al. Delay and capacity in MANETs under random walk mobility model. Wireless Netw 20, 525–536 (2014). https://doi.org/10.1007/s11276-013-0617-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-013-0617-6

Keywords

Navigation