Skip to main content
Log in

Huddle hierarchy based group key management protocol using gray code

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Secure and reliable group communication is an active area of research. Its popularity is fuelled by the growing importance of group-oriented and collaborative applications. The central research challenge is secure and efficient group key management. The present paper is based on the huddle hierarchy based secure multicast group key management scheme using the most popular absolute encoder output type code named gray code. The focus is of twofolds. The first fold deals with the reduction of computation complexity which is achieved in this protocol by performing fewer multiplication operations during the key updating process. To optimize the number of multiplication operations, the fast Fourier transform, divide and conquer approach for multiplication of polynomial representation of integers, is used in this proposed work. The second fold aims at reducing the amount of information stored in the Group Center and group members while performing the update operation in the key content. Comparative analysis to illustrate the performance of various key distribution protocols is shown in this paper and it has been observed that this proposed algorithm reduces the computation and storage complexity significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wallner, D. M., Harder, E. J., & Agee, R. C. (1997). Key management for multicast: issues and architectures. Informational RFC, draft-Wallnerkey-arch-ootxt, July 1997.

  2. Chang, I., Engel, R., Kandlur, D., Pendarakis, D., & Daha, D. (1999). Key management for secure internet multicast using Boolean function minimization technique. In ACM SIGCOMM’99, March 1999.

  3. Varalakshmi, R., & Uthariaraj, V. R. (2011). A new secure multicast group key management using gray code. Paper no: 978-1-4577-0590-8/11. In IEEE-international conference on recent trends in information technology, ICRTIT 2011, MIT, Anna University, Chennai, June 3–5, 2011.

  4. Li, M., Poovendran, R., & McGrew, D. A. (2004). Minimizing center key storage in hybrid one-way function based group key management with communication constraints. Information Processing Letters, 93, 191–198.

    Article  MathSciNet  Google Scholar 

  5. Poovendran, R., & Baras, J. S. (2001). An information-theoretic approach for design and analysis of rooted-tree-based multicast key management schemes. IEEE Transactions on Information Theory, 47, 2824–2834.

    Article  MATH  MathSciNet  Google Scholar 

  6. Kulkarni, S. S., & Bruhadeshwar, B. (2010). Key-update distribution in secure group communication. Computer Communications, 33(6), 689–705.

    Article  Google Scholar 

  7. Bruhadeshwar, B., Kothapalli, K., & Deepya, M. S. (2009). Reducing the cost of session key establishment. In ARES (2009), pp. 369–373.

  8. Bruhadeshwar, B., Kothapalli, K., Poornima, M., & Divya, M. (2009). Routing protocol security using symmetric key based techniques. In ARES (2009), pp. 193–200.

  9. Wang, S.-J., Tsai, Y.-R., Shen, C.-C., & Chen, P.-Y. (2010). Hierarchical key derivation scheme for group-oriented communication systems. International Journal of Information Technology, Communications and Convergence, 1(1), 66–76.

    Article  Google Scholar 

  10. Imani, M., Taheri, M., & Naderi, M. (2010). Security enhanced routing protocol for ad hoc networks. Journal of Convergence, 1(1), 43–48.

    Google Scholar 

  11. Wong, C., Gouda, M., & Lam, S. (2002). Secure group communications using key graphs. IEEE/ACM Transactions on Networking, 8, 16–30.

    Article  Google Scholar 

  12. Blaum, M., Bruck, J., & Vardy, A. (1996). MDS array codes with independent parity symbols. IEEE Transactions on Information Theory, 42(2), 529–542.

    Article  MATH  MathSciNet  Google Scholar 

  13. Trappe, W., & Lawrence, C. (2007). Introduction to cryptography with coding theory (2nd ed., pp. 66–70). Washington: Pearson Education.

    Google Scholar 

  14. Lihao, Xu, & Huang, Cheng. (2008). Computation-efficient multicast key distribution. IEEE Transactions on Parallel and Distributed Systems, 19(5), 1–10.

    Article  Google Scholar 

  15. Naranjo, J. A. M., Lopez-Ramos, J. A., & Casado, L. G. (2010). Applications of the extended Euclidean algorithm to privacy and secure communications. In Proceedings of the 10th international conference on computational and mathematical methods in science and engineering, CMMSE, 703–713.

  16. Trappe, W., Song, J., Radha Poovendran, K. J., & Liu, R. (2001). Key distribution for secure multimedia multicasts via data embedding. IEEE International Conference on Acoustics, Speech, and Signal Processing, 3, 1449–1452.

    Google Scholar 

  17. Lee, J. S., Son, J. H., Park, Y. H., & Seo, S. W. (2008). Optimal level-homogeneous tree structure for logical key hierarchy. In: Proceedings of IEEE conference on communication system software and middleware workshop, COMSWARE.

  18. Je, D.-H., Lee, J.-S., Park, Y., & Seo, S.-W. (2010). Computation-and-storage-efficient key tree management protocol for secure multicast communications. Computer Communications, 33(6), 136–148.

    Article  Google Scholar 

  19. McGrew, A. D., & Sherman, A. T. (2003). Key establishment in large dynamic groups using one-way function trees. IEEE Transactions on Software Engineering, 29(5), 444–458.

    Article  Google Scholar 

  20. Trappe, W., Song, J., Poovendran, R., & Liu, K. J. R. (2003). Key management and distribution for secure multimedia multicast. IEEE Transactions on Multimedia, 5(4), 544–557.

    Article  Google Scholar 

  21. Vijayakumar, P., Bose, S., & Kannan A. (2013). Centralized key distribution protocol using the greatest common divisor method. Computers & Mathematics with Applications, 65(9), 1360–1368.

    Google Scholar 

  22. Ng, W. H. D., Howarth, M., Sun, Z., & Cruickshank, H. (2007). Dynamic balanced key tree management for secure multicast communications. IEEE Transactions on Computers, 56(5), 590–605.

    Article  MathSciNet  Google Scholar 

  23. Pollard, J. M. (1971). The fast Fourier transform in a finite field. Mathematics of Computation, 25(114), 365–374.

    Article  MATH  MathSciNet  Google Scholar 

  24. Scott, M. (1990). An implementation of the fast-Fourier multiplication algorithm. Technical report CA-0790, Dublin City University.

  25. Denis, T. S. (2003). BigNum math implementing cryptographic multiple precision arithmetic. Rockland, MA: SYNGRESS Publishing.

  26. Singleton, R. C. (1967). On computing the fast Fourier transform. Communications of the AGM, 10, 647–654.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Varalakshmi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varalakshmi, R., Uthariaraj, V.R. Huddle hierarchy based group key management protocol using gray code. Wireless Netw 20, 695–704 (2014). https://doi.org/10.1007/s11276-013-0631-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-013-0631-8

Keywords

Navigation