Skip to main content
Log in

A green radio resource allocation scheme for LTE-A downlink systems with CoMP transmission

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, we propose a green radio resource allocation (GRRA) scheme for LTE-advanced downlink systems with coordinated multi-point (CoMP) transmission to support multimedia traffic. The GRRA scheme defines a green radio utility function, which is composed of the required transmission power, assigned modulation order, and the number of coordinated transmission nodes. By maximizing this utility function, the GRRA scheme can effectively save transmission power, enhance spectrum efficiency, and guarantee quality-of-service requirements. The simulation results show that when the traffic load intensity is greater than 0.7, the GRRA scheme can save transmission power by more than 33.9 and 40.1 %, as compared with the conventional adaptive radio resource allocation (ARRA) scheme (Tsai et al. in IEEE Trans Wireless Commun 7(5):1734–1743, 2008) with CoMP and the utility-based radio resource allocation (URRA) scheme (Katoozian et al. in IEEE Trans Wireless Commun 8(1):66–71, 2009) with CoMP, respectively. Besides, it enhances the system throughput by approximately 5.5 % and improves Jain’s fairness index for best effort users by more than 155 % over these two ARRA and URRA schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Niu, Z., Wu, Y., Gong, J., & Yang, Z. (2010). Cell zooming for cost-efficient green cellular networks. IEEE Communications Magazine, 48(11), 74–79.

    Article  Google Scholar 

  2. Chen, Y., Zhang, S., Xu, S., & Li, G. Y. (2011). Fundamental trade-offs on green wireless networks. IEEE Communications Magazine, 49(6), 30–37.

    Article  Google Scholar 

  3. Han, C., Harrold, T., Armour, S., Krikidis, I., Videv, S., Grant, P. M., et al. (2011). Green radio: Radio techniques to enable energy-efficient wireless networks. IEEE Communications Magazine, 49(6), 46–54.

    Article  Google Scholar 

  4. Bogucka, H., & Conti, A. (2011). Degrees of freedom for energy savings in practical adaptive wireless systems. IEEE Communications Magazines, 49(6), 38–45.

    Article  Google Scholar 

  5. Wang, B., Wu, Y., Han, F., Yang, Y. H., & Liu, K. J. R. (2011). Green wireless communications: A time-reversal paradigm. IEEE Journal on Selected Areas in Communications, 29(8), 1698–1710.

    Article  Google Scholar 

  6. Ismail, M., & Zhuang, W. (2011). Network cooperation for energy saving in green radio communications. IEEE Wireless Communications, 18(5), 76–81.

    Article  Google Scholar 

  7. Parkvall, S., & Astely, D. (2009). The evolution of LTE towards IMT-advanced. Journal of Communications, 4(3), 146–154.

    Article  Google Scholar 

  8. 3GPP TR36.913. (2008). Requirements for further advancements for EUTRA (LTE-advanced). 3rd Generation Partnership Project, Tech. Rep., June 2008.

  9. Ghosh, A., Ratasuk, R., Mondal, B., Mangalvedhe, N., & Thomas, T. (2010). LTE-advanced: Next-generation wireless broadband technology. IEEE Transactions on Wireless Communications, 17(3), 10–22.

    Article  Google Scholar 

  10. 3GPP TR36.814 (2010). Evolved universal terrestrial radio access (E-UTRA); further advancements for E-UTRA physical layer aspects. 3rd Generation Partnership Project, Tech. Rep., Mar. 2010.

  11. Andrews, J. G., Choi, W., & Heath, R. W. Jr. (2007). Overcoming interference in spatial multiplexing MIMO cellular networks. IEEE Transactions on Wireless Communications, 14(6), 95–104.

    Article  Google Scholar 

  12. Karakayali, M. K., Foschini, G. J., & Valenzuela, R. A. (2006). Network coordination for spectrally efficient communications in cellular systems. IEEE Transactions on Wireless Communications, 13(4), 56–61.

    Article  Google Scholar 

  13. Sawahashi, M., Kishiyama, Y., Morimoto, A., Nishikawa, D., & Tanno, M. (2010). Coordinated multipoint transmission/reception techniques for LTE-advanced. IEEE Transactions on Wireless Communications, 17(3), 26–34.

    Article  Google Scholar 

  14. Tölli, A., Codreanu, M., & Juntti, M. (2008). Cooperative MIMO–OFDM cellular system with soft handover between distributed base station antennas. IEEE Transactions on Wireless Communications, 7(4), 1428–1440.

    Article  Google Scholar 

  15. Gao, X., Li, A., & Kayama, H. (2009). Low-complexity downlink coordination scheme for multi-user CoMP in LTE-advanced system. IEEE PIMRC.

  16. Fodor, G., Johansson, M., & Soldati, P. (2009). Near optimum power control under fairness constraints in CoMP systems. IEEE GLOBECOM.

  17. Liu, J., Chang, Y., Pan, Q., Zhang, X., & Yang, D. (2010). A novel transmission scheme and scheduling algorithm for CoMP-SU–MIMO in LTE-A system. IEEE VTC-Spring.

  18. Yu, J., Cai, Y., Ma, Y., Zhang, D., & Xu, Y. (2007). A cross-layer design of packet scheduling and resource allocation for multiuser MIMO–OFDM system. ICICS.

  19. Tsai, C. F., Chang, C. J., Ren, F. C., & Yen, C. M. (2008). Adaptive radio resource allocation for downlink OFDMA/SDMA systems with multimedia traffic. IEEE Transactions on Wireless Communications, 7(5), 1734–1743.

    Article  Google Scholar 

  20. Katoozian, M., Navaie, K., & Yanikomeroglu, H. (2009). Utility-based adaptive radio resource allocation in OFDM wireless networks with traffic prioritization. IEEE Transactions on Wireless Communications, 8(1), 66–71.

    Article  Google Scholar 

  21. Yen, C. M., Chang, C. J., & Wang, L. C. (2010). A utility-based TMCR scheduling scheme for downlink MIMO/OFDMA systems. IEEE Transactions on Vehicular Technology, 59(8), 4105–4115.

    Article  Google Scholar 

  22. Jain, R. K., Chiu, D. M. W., & Hawe, W. R. (1984). A quantitative measure of fairness and discrimination for resource allocation and shared computer system. Technical Report DEC-TR-301, Digital Equipment Corporation.

  23. Rahman, M., Yanikomeroglu, H., & Wong, W. (2009). Interference avoidance with dynamic inter-cell coordination for downlink LTE system. IEEE WCNC, April 2009.

  24. 3GPP TR25.814. (2005). Physical layer aspects for evolved UTRA. 3rd Generation Partnership Project, Tech. Rep.

  25. Rumney, M. (2009). LTE and the evolution to 4G wireless: Design and measurement challenges. New York: Wiley.

    Google Scholar 

  26. Hottinen, A., Tirkkonen, O., & Wichman, R. (2003). Multi-antenna transceiver techniques for 3G and beyond. New York: Wiley.

    Book  Google Scholar 

  27. Madan, R., Mehta, N. B., Molisch, A. F., & Zhang, J. (2008). Energy-efficient cooperative relaying over fading channels with simple relay selection. IEEE Transactions on Wireless Communications, 7(8), 3013–3025.

    Article  Google Scholar 

  28. Ngo, D. T., Tellambura, C., & Nguyen, H. H. (2010). Resource allocation for OFDMA-based cognitive radio multicast networks with primary user activity consideration. IEEE Transactions on Vehicular Technology, 59(4), 1668–1679.

    Article  Google Scholar 

  29. 3GPP TR 25.996. (2010). Universal mobile telecommunications system (UMTS); spacial channel model for multiple input multiple output (MIMO) simulations. 3rd Generation Partnership Project, Tech. Rep., Jan. 2010.

  30. WiMAX forum. (2007). Wimax system evaluation methodology. V.2.0. Tech. Rep., Dec. 2007.

  31. 3GPP TR 25.892. (2004). Feasibility study for OFDM for UTRAN enhancement. 3rd Generation Partnership Project, Tech. Rep., 2004.

Download references

Acknowledgments

The authors would like to give thanks the anonymous reviewers for their suggestions to improve the presentation of the paper. The work was supported by National Science Council (NSC), Taiwan, under contract number NSC 100-2221-E-009-102-MY3, and the Ministry of Education, Taiwan, under the ATU plan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Ching Chung.

Appendix

Appendix

The pseudocode of the PRA algorithm is shown below.

figure d

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, WC., Chang, CJ. & Teng, HY. A green radio resource allocation scheme for LTE-A downlink systems with CoMP transmission. Wireless Netw 20, 1409–1420 (2014). https://doi.org/10.1007/s11276-013-0684-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-013-0684-8

Keywords

Navigation