Skip to main content
Log in

Towards efficient distributed service discovery in low-power and lossy networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Low-power and Lossy Networks (LLNs) have been recognised as a promising technology to achieve ubiquity in the internet of things era. To realise this, service oriented architectures and the emerging IPv6 over low-power wireless personal area network (6LoWPAN) standard are identified as key paradigms. One of the main elements to succeed any service oriented approach is a proficient service discovery protocol. In this paper, we propose EADP: an efficient protocol to announce and discover services in 6LoWPAN networks. EADP adopts a fully distributed approach using an adaptive push–pull model to ensure fast discovery times, low energy consumption and low generated overhead with timely reaction to network dynamics. EADP achieves this by using context-awareness information, delivered by a trickle algorithm. EADP was implemented and evaluated in Contiki using the Cooja simulator. Simulation results show EADP’s capability to realise fast discovery times with low cost in terms of energy and overhead. These achievements make EADP very suitable for pervasive LLN applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Dynamic LLNs encompass mobile networks, networks with frequent nodes and services churn and networks with unreliable links. Thus, networks with stable topologies, small churn and good links can be considered as static.

  2. Other approaches combining trickle with other techniques are proposed in [46] and [47].

References

  1. Erl, T. (2008). Soa: Principles of service design (Vol. 1). Upper Saddle River: Prentice Hall.

    Google Scholar 

  2. Tianfield, H. (2011). Context-aware service discovery in pervasive environments: A survey. International Transactions on Systems Science and Applications, 7(3/4), 314–338.

    Google Scholar 

  3. Kushalnagar, N., Montenegro, G., & Schumacher, C. (2007). IPv6 over low-power wireless personal area networks (6LoWPANs): Overview, assumptions, problem statement, and goals. http://www.rfc-base.org/txt/rfc-4919.txt.

  4. Chauhdary, S. H., Cui, M., Kim, J. H., Bashir, A. K., & Park, M.-S. (2008) A context-aware service discovery consideration in 6LoWPAN. In Third international conference on convergence and hybrid information technology. ICCIT’08, 2008, vol. 1, pp. 21–26.

  5. Anwar, F. M., Raza, M. T., Yoo, S.-W., & Kim, K.-H. (2010). ENUM based service discovery architecture for 6LoWPAN. In 2010 IEEE wireless communications and networking conference (WCNC), pp. 1–6.

  6. Wang, X., & Huang, H. (2013) A service model for 6LoWPAN wireless sensor networks. International Journal of Distributed Sensor Networks.

  7. Djamaa, B., & Witty, R. (2013). An efficient service discovery protocol for 6LoWPANs. Science and Information Conference (SAI), 2013, 645–652.

    Google Scholar 

  8. Guttman, E., Perkins, C., Veizades, J., & Day, M. (1999) Service location protocol, version 2. http://www.ietf.org/rfc/rfc2608.txt.

  9. Bellwood, T., Clément, L., & von Riegen, C. (2003) UDDI Version 3.0.1. http://uddi.org/pubs/uddi-v3.0.1-20031014.htm.

  10. Cugola, G., & Margara, A. (2010). SLIM: Service location and invocation middleware for mobile wireless sensor and actuator networks. International Journal of Systems and Service-Oriented Engineering, 1(3), 60–74.

    Article  Google Scholar 

  11. Kovacevic, A., Ansari, J., & Mahonen, P. (2010) NanoSD: A flexible service discovery protocol for dynamic and heterogeneous wireless sensor networks. In 2010 Sixth international conference on mobile ad-hoc and sensor networks (MSN), pp. 14–19.

  12. Jardak, C., Meshkova, E., Riihijarvi, J., Rerkrai, K., & Mahonen, P. (2008) Implementation and performance evaluation of nanoIP protocols: Simplified versions of TCP, UDP, HTTP and SLP for wireless sensor networks. In IEEE wireless communications and networking conference, 2008. WCNC 2008, pp. 2474–2479.

  13. Nidd, M. (2001). Service discovery in DEAPspace. IEEE Personal Communications, 8(4), 39–45.

    Article  Google Scholar 

  14. Oikonomou, G., Phillips, I., Guan, L., & Grigg, A. (2011) ADDER: Probabilistic, application layer service discovery for MANETs and hybrid wired-wireless networks. In Communication networks and services research conference (CNSR), 2011 Ninth Annual, 2011, pp. 33–40.

  15. Campo, C., García-Rubio, C., López, A. M., & Almenárez, F. (2006). PDP: A lightweight discovery protocol for local-scope interactions in wireless ad hoc networks. Computer Networks, 50(17), 3264–3283.

    Article  MATH  Google Scholar 

  16. Kaur, M., Bhatt, S., Schwiebert, L., & Richard, G. G. (2008) An efficient protocol for service discovery in wireless sensor networks. In 2008 IEEE GLOBECOM workshops, pp. 1–6.

  17. Li, X., Santoro, N., & Stojmenovic, I. (2009). Localized distance-sensitive service discovery in wireless sensor and actor networks. IEEE Transactions on Computers, 58(9), 1275–1288.

    Article  MathSciNet  Google Scholar 

  18. Gasparovic, B., & Mezei, I. (2012) Improving iMesh based service discovery by agents in multi-hop wireless sensor and actuator networks. In Telecommunications Forum (TELFOR), 2012 20th, pp. 611–614.

  19. Lukic, M., & Mezei, I. (2012). Distributed distance sensitive iMesh based service discovery in dense WSAN. In X.-Y. Li, S. Papavassiliou, & S. Ruehrup (Eds.), Ad hoc, mobile, and wireless networks (pp. 435–448). Berlin: Springer.

    Chapter  Google Scholar 

  20. Heni, M., & Bouallegue, R. (2011) Adaptive service discovery and proactive routing protocol for Mobile Ad hoc Network. In Mediterranean microwave symposium (MMS), 2011 11th, pp. 193–196.

  21. Raghavan, B., Harju, J., & Silverajan, B. (2008). Service discovery framework for MANETs using cross-layered design. In Proceedings of the 6th international conference on wired/wireless internet communications, Berlin, Heidelberg, pp. 152–163.

  22. Ververidis, C. N., & Polyzos, G. C. (2009). A routing layer based approach for energy efficient service discovery in mobile ad hoc networks. Wireless Communications and Mobile Computing, 9(5), 655–672.

    Article  Google Scholar 

  23. Sailhan, F., & Issarny, V. (2005) Scalable service discovery for MANET, presented at the international conference on pervasive computing and communications: PerCom 2005, pp. 235–244.

  24. Fernandes, P., & Rocha, R. M. (2008). Information networking. In T. Vazão, M. M. Freire, & I. Chong (Eds.), Towards ubiquitous networking and services (pp. 396–405). Berlin: Springer.

    Chapter  Google Scholar 

  25. SOA Manifesto. http://www.soa-manifesto.org.

  26. Kim, K.-H., Baig, W., Mukhtar, H., Yoo, S., & Park, S. Simple service location protocol (SSLP) for 6LoWPAN. http://tools.ietf.org/html/draft-daniel-6lowpan-sslp-02.

  27. Butt, T. A., Phillips, I., Guan, L., & Oikonomou, G. (2012) TRENDY: An adaptive and context-aware service discovery protocol for 6LoWPANs. In Proceedings of the third international workshop on the web of things, Newcastle, UK, pp. 2:1–2:6.

  28. Bormann, C., Castellani, A. P., & Shelby, Z. (2012). CoAP: An application protocol for billions of tiny internet nodes. IEEE Internet Computing, 16(2), 62–67.

    Article  Google Scholar 

  29. Shelby, Z. (2012) Constrained RESTful Environments (CoRE) Link Format.

  30. Shelby, Z., Krco, S., & Bormann, C. CoRE resource directory. http://tools.ietf.org/html/draft-ietf-core-resource-directory-00.

  31. Jimenez, J., Liu, M., & Harjula, E. (2013) A distributed resource directory (DRD). Pearson Education.

  32. Cheshire, S., & Krochmal, M. (2013) Multicast dns. Work Prog.

  33. Cheshire, S., & Krochmal, M. (2013) DNS-based service discovery. Work Prog.

  34. Jara, A. J., Martinez-Julia, P., & Skarmeta, A. (2012) Light-weight multicast DNS and DNS-SD (lmDNS-SD): IPv6-based resource and service discovery for the web of things, pp. 731–738.

  35. Klauck, R., & Kirsche, M. (2012) Bonjour contiki: A case study of a DNS-based discovery service for the internet of things. In Proceedings of the 11th international conference on ad hoc, mobile, and wireless networks, Berlin, Heidelberg, pp. 316–329.

  36. Klauck, R., & Kirsche, M. (2013). Enhanced DNS message compression: Optimizing mDNS/DNS-SD for the use in 6LoWPANs. In 2013 IEEE international conference on pervasive computing and communications workshops (PERCOM Workshops), 2013, pp. 596–601.

  37. Sarwar, U., Sinniah, G. R., Suryady, Z., & Khosdilniat, R. (2010) Architecture for 6LoWPAN mobile communicator system. In International multi conference of engineers and computer scientists, Hong Kong, vol. II.

  38. Singh, D., Tiwary, U. S., Lee, H.-J., & Chung, W.-Y. (2009) Global healthcare monitoring system using 6Lowpan Networks. In Proceedings of the 11th international conference on advanced communication technology–volume 1, Piscataway, NJ, USA, 2009, pp. 113–117.

  39. Intelligenter Container: Home. http://www.intelligentcontainer.com/en/home.html.

  40. Levis, P., Patel, N., Culler, D., & Shenker, S. (2004) Trickle: A self-regulating algorithm for code propagation and maintenance in wireless sensor networks. In Proceedings of the first USENIX/ACM symposium on networked systems design and implementation (NSDI, 2004), pp. 15–28.

  41. Levis, P., Clausen, T., Hui, J., Gnawali, O., & Ko, J. (2011) The trickle algorithm. Internet Eng. Task Force RFC6206.

  42. Hui, J., & Kelsey, R. (2013) Multicast protocol for low power and lossy networks (MPL).

  43. Brandt, A., Designs, S., Hui, J., Kelsey, R., Levis, P., Pister, K., Struik, R., Vasseur, J. P., & Alexander, R. (2012). RPL: IPv6 routing protocol for low-power and lossy networks.

  44. Gnawali, O., Fonseca, R., Jamieson, K., Moss, D., & Levis, P. (2009) Collection tree protocol. In Proceedings of the 7th ACM conference on embedded networked sensor systems, pp. 1–14.

  45. Hui, J. W., & Culler, D. (2004). The dynamic behaviour of a data dissemination protocol for network programming at scale. In Proceedings of the 2nd international conference on embedded networked sensor systems, pp. 81–94.

  46. Lin, K., & Levis, P. (2008) Data discovery and dissemination with dip. In Proceedings of the 7th international conference on Information processing in sensor networks, pp. 433–444.

  47. Dang, T., Bulusu, N., Feng, W.-C., & Park, S. (2009) Dhv: A code consistency maintenance protocol for multi-hop wireless sensor networks. In Wireless sensor networks, Springer, pp. 327–342.

  48. Tolle, G. & Culler, D. (2005) Design of an application-cooperative management system for wireless sensor networks. In Wireless sensor networks, 2005. Proceedings of the second European workshop on, 2005, pp. 121–132.

  49. Gnawali, O., Jang, K.-Y., Paek, J., Vieira, M., Govindan, R., Greenstein, B., Joki, A., Estrin, D., & Kohler, E. (2006) The tenet architecture for tiered sensor networks. In Proceedings of the 4th international conference on Embedded networked sensor systems, pp. 153–166.

  50. Chowdhury, A. H., Ikram, M., Cha, H.-S., Redwan, H., Shams, S. M., Kim, K.-H., & Yoo, S.-W. (2009). Route-over vs Mesh-under Routing in 6LoWPAN. In Proceedings of the 2009 international conference on wireless communications and mobile computing: Connecting the world wirelessly, pp. 1208–1212.

  51. Perkins, C., Belding-Royer, E., & Das, S. (2003). Ad hoc on-demand distance vector (AODV) routing. http://www.ietf.org/rfc/rfc3561.txt.

  52. Dunkels, A., Gronvall, B., & Voigt, T. (2004) Contiki-a lightweight and flexible operating system for tiny networked sensors. In Local computer networks, 2004. 29th Annual IEEE international conference on, 2004, pp. 455–462.

  53. Osterlind, F., Dunkels, A., Eriksson, J., Finne, N., & Voigt, T. (2006). Cross-level sensor network simulation with cooja. In Local computer networks, proceedings 2006 31st IEEE conference on, 2006, pp. 641–648.

  54. Polastre, J., Szewczyk, R., & Culler, D. (2005) Telos: enabling ultra-low power wireless research. In Fourth international symposium on information processing in sensor networks, 2005. IPSN 2005, pp. 364–369.

  55. Dunkels, A. (2011) The contikimac radio duty cycling protocol.

  56. Dunkels, A., Osterlind, F., Tsiftes, N., & He, Z. (2007) Software-based on-line energy estimation for sensor nodes. In Proceedings of the 4th workshop on embedded networked sensors, pp. 28–32.

  57. Tseng, Y.-C., Ni, S.-Y., Chen, Y.-S., & Sheu, J.-P. (2002). The broadcast storm problem in a mobile ad hoc network. Wireless Networks, 8(2–3), 153–167.

    Article  MATH  Google Scholar 

  58. Bulusu, N., Estrin, D., Girod, L., & Heidemann, J. (2001) Scalable coordination for wireless sensor networks: Self-configuring localization systems, in (ISCTA’01), Ambleside, UK, 2001, pp. 1–6.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Badis Djamaa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djamaa, B., Richardson, M., Aouf, N. et al. Towards efficient distributed service discovery in low-power and lossy networks. Wireless Netw 20, 2437–2453 (2014). https://doi.org/10.1007/s11276-014-0749-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-014-0749-3

Keywords