Skip to main content
Log in

SVC-aware selective repetition for robust streaming of scalable video

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

3G video broadcast services employ forward error correction, together with Reed-Solomon erasure coding with appropriate interleaving, in the MAC layer to deal with bursts of errors. However, this method of error recovery is less effective at the margins of coverage where channel conditions are bad, so that mobiles experience higher error rates and longer error bursts: this effectively limits the service area for video applications. To overcome this problem, we augment scalable video coding (SVC) with a selective repetition scheme, which retransmits those packets within the layered structure of SVC that are most important for video. Simulations using an the example MPEG-4 fine granularity scalability video demonstrate that our scheme safeguards the important packets and improves the service quality. Furthermore, energy measurements show that it also extends battery life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. EvalVid is a framework and toolkit for conducting a unified assessment of the quality of video transmission. Besides measuring QoS parameters of the underlying network, such as loss rates, delays, and jitter, EvalVid supports subjective video quality evaluation of the received video based on the frame-by-frame PSNR calculation.

  2. The forward link of the 3GPP2 broadcast services system consists of a data channel that is divided into 1.67-ms time slots.

References

  1. Hartung, F., Horn, U., Huschke, J., Kampmann, M., Lohmar, T., & Lundevall, M. (2007). Delivery of broadcast servces in 3G networks. IEEE Transactions on Broadcasting, 53(1), 188–199.

    Article  Google Scholar 

  2. Wang, J., Sinnarajaj, R., Chen, T., Wei, Y., & Tiedemann, E. (2004). Broadcast and multicast services in CDMA2000. IEEE Communications Magazine, 42(2), 76–82.

    Article  Google Scholar 

  3. McCanne, S. R., Jacobson, V., & Vetterli, M. (1996). Receiver-driven layered multicast. In: Proceedings of ACM SIGCOMM (pp. 117–130).

  4. Blahut, R. E. (1983). Theory and practice of error control codes. Boston: Addison-Wesley.

    MATH  Google Scholar 

  5. Kang, K., & Sha, L. (2010). An interleaving structure for guaranteed QoS in real-time broadcasting systems. IEEE Transactions on Computers, 59(5), 666–678.

    Article  MathSciNet  Google Scholar 

  6. Agashe, P., Rezaiifar, R., & Bender, P. (2004). CDMA2000 high rate broadcast packet data air interface design. IEEE Communications Magazine, 42(2), 83–89.

    Article  Google Scholar 

  7. Kang, K., Cho, Y., & Shin, H. (2007). Energy-efficient MAC-layer error recovery for mobile multimedia applications in 3GPP2 BCMCS. IEEE Transactions on Broadcasting, 53(1), 338–349.

    Article  Google Scholar 

  8. Li, W. (2001). Overview of fine granuarity scalability in MPEG-4 video standard. IEEE Transactions on Circuits and Systems for Video Technology, 11(3), 301–317.

    Article  Google Scholar 

  9. Li, W. (2004). Coding of audio-visual objects— Part2, ISO/IEC 14496–2, May 2004.

  10. Bhushan, N., Lott, C., Black, P., Attar, R., Jou, Y.-C., Fan, M., et al. (2006). CDMA2000 1xEV-DO Revision A: A physical layer and MAC layer overview. IEEE Communications Magazine, 44(2), 37–49.

    Article  Google Scholar 

  11. Ebel, W. J., & Tranter, W. H. (1995). The performance of Reed-Solomon codes on a bursty-noise channel. IEEE Transactions on Communications, 43(234), 298.

    Article  MATH  Google Scholar 

  12. Kang, K. (2008). Probabilistic analysis of data interleaving for Reed-Solomon coding in BCMCS. IEEE Transactions on Wireless Communications, 7(10), 3878–3888.

    Article  Google Scholar 

  13. Schwarz, H., Marpe, D., & Wiegand, T. (2007). Overview of the scalable video coding extension of the H.264/AVC standard. IEEE Transactions on Circuits and Systems for Video Technology, 17(9), 1103–1120.

    Article  Google Scholar 

  14. Choi, H., Nam, J., Sim, D., & Bajic, I. V. (2011). Scalable video coding based on high efficiency video coding (HEVC). In: Proceedings of IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (pp. 346–351)

  15. Li, W., Ling, F., & Sun, H. (1997). Bitplane coding of DCT coefficients, ISO/IEC JTC1/SC29/WG11, MPEG97/M2691.

  16. Li, W., & Chen, Y. (1999). Experiment result on fine granularity scalability, ISO/IEC JTC1/SC29/WG11, MPEG99/M4792.

  17. Kang, K., & Jeon, W. J. (2012). Differentiated protection of video layers to improve perceived quality. IEEE Transactions on Mobile Computing, 11(2), 292–304.

    Article  Google Scholar 

  18. Pearmain, A., Carvalho, A., Hamosfakidis, A., & Cosmas, J. (1998). The MoMuSys MPEG-4 mobile multimedia terminal. In: Proceeedings of 3rd ACTS Mobile Summit Conference (pp. 224–229).

  19. Klaue, J., Rathke, B., & Wolisz, A. (2003). EvalVid-A framework for video transmission and quality evaluation. Lecture Notes in Computer Science, 2794, 255–272.

    Article  Google Scholar 

  20. Zorzi, M., Rao, R. R., & Milstein, L. B. (1998). Error statistics in data transmission over fading channels. IEEE Transactions on Communications, 46(11), 1468–1477.

    Article  Google Scholar 

  21. Zorzi, M., Rao, R. R., & Milstein, L. B. (1997). ARQ error control on fading mobile radio channels. IEEE Transactions on Vehicular Technology, 46(2), 445–455.

    Article  Google Scholar 

  22. Proakis, J. G. (1989). Digital Communications (2nd ed.). New York: McGraw-Hill.

    Google Scholar 

  23. Bajić, I.V. (2009). Mobile Multimedia Broadcasting Standards (Chapter 11, Error Control for Broadcasting and Multicasting: An Overview), Springer, pp. 313–335.

  24. Li, Q., & van der Schaar, M. (2004). Providing adaptive QoS to layered video over wireless local area networks through real-time retry limit adaptation. IEEE Transactions on Multimedia, 6(2), 278–290.

    Article  Google Scholar 

  25. van der Schaar, M., & Turaga, D. (2007). Cross-layer packetization and retransmission strategies for delay-sensitive wireless multimedia transmission. IEEE Transactions on Multimedia, 9(1), 185–197.

    Article  Google Scholar 

  26. Qiao, D., Choi, S., & Shin, Kang G. (2002). Goodput analysis and link adaptation for IEEE 802.11a wireless LAN. IEEE Transactions on Mobile Computing, 1(4), 278–292.

    Article  Google Scholar 

  27. Shankar, N. S., van der Schaar, M. (2007). Performance analysis of video transmission over IEEE 802.11a/e WLANs. IEEE Transactions on Vehicular Technology, 56(4), Part 2, 2346–2362.

  28. van der Schaar, M., Krishnamachari, S., Choi, S., & Xu, X. (2003). Adaptive cross-layer protection strategies for robust scalable video transmission over 802.11 WLANs. IEEE Journal on Selected Areas of Communications, 21(10), 1752–1763.

    Article  Google Scholar 

  29. Wu, D., Hou, Y. T., & Zhang, Y. Q. (2001). Scalable video coding and transport over broadband wireless networks. Proceedings of the IEEE, 89(1), 6–20.

    Article  Google Scholar 

  30. Zhang, Q., Zhu, W., & Zhang, Y. Q. (2004). Channel-adaptive resource allocation for scalable video transmission over 3G wireless network. IEEE Transactions on Circuits and Systems for Video Technology, 14(8), 1049–1064.

    Article  Google Scholar 

  31. Mohr, A. E., Riskin, E. A., & Ladner, R. E. (2000). Unequal loss protection: Graceful degradation of image quality overpacket erasure channels through forward error correction. IEEE Journal on Selected Areas in Communications, 18(6), 819–828.

    Article  Google Scholar 

  32. Zhao, S., Xiong, Z., & Wang, X. (2002). Joint error control and power allocation for video transmission over CDMA networks with multiuser detection. IEEE Transactions on Circuits and Systems for Video Technology, 12(6), 425–437.

    Article  Google Scholar 

  33. Tan, W., & Zakhor, A. (2001). Video multicast using layered FEC and scalable compression. IEEE Transaction Circuits and Systems for Video Technology, 11(3), 373–386.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the MSIP (Ministry of Science, ICT & Future Planning), Korea, under the ITRC (Information Technology Research Center) support program (NIPA-2014-H0301-14-1044) supervised by the NIPA (National ICT Industry Promotion Agency), and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the MSIP (NRF-2013R1A1A1059188).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyungtae Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Kang, K. SVC-aware selective repetition for robust streaming of scalable video. Wireless Netw 21, 115–126 (2015). https://doi.org/10.1007/s11276-014-0773-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-014-0773-3

Keywords

Navigation