Skip to main content
Log in

Power optimization for dynamic spectrum access with convex optimization and intelligent algorithm

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In dynamic spectrum access networks, relay transmission has been considered as a potential method to help cognitive users communicate by reducing their interferences to primary networks especially in the underlay mode. In this paper, we propose a power optimization algorithm for both regenerative and non-regenerative relay systems in condition of Rayleigh fading channels. Based on analyzing the features of dynamic spectrum access networks, a relevant interference model is first built. Then, we propose a combined power allocation strategy in order to minimize the outage probabilities in the cooperative transmission. For regenerative system, we give a closed-form expression for the power allocation by taking into account the characteristics of the fading channels. For non-regenerative system, we utilize pattern search algorithm to solve the optimization problem since the objective function is complex and uneasy to be figured out directly. A competitive strategy for initial point selection is also designed to guarantee a global optimal outcome for the proposed pattern search algorithm. Numerical results show that the system performances with optimum power allocation outperform those with uniform power allocation whereas lower outage probabilities can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mitola, J., & Maguire, G. (1999). Cognitive radio: making software radios more personal. IEEE Personal Communications, 6, 13–18.

    Article  Google Scholar 

  2. Talay, A. C., & Altilar, D. T. (2011). Self adaptive routing for dynamic spectrum access in cognitive radio networks. Journal of Network and Computer Applications, 34, 1380–97.

    Article  Google Scholar 

  3. Liang, Y. C., Chen, K. C., Li, G. Y., & Mahonen, P. (2011). Cognitive radio networking and communications: An overview. IEEE Transactions on Vehicular Technology, 60, 13–18.

    Google Scholar 

  4. Chen, Z., Wang, C. X., & Hong, X. (2010). Interference modeling for cognitive radio networks with power or contention control. In Proceeding of IEEE WCNC.

  5. Le, T., & Liang, Q. (2007). An efficient power control scheme for cognitive radios. IEEE WCNC.

  6. Im, S., Jeon, H., & Lee, H. (2008). Autonomous distributed power control for cognitive networks. IEEE VTC. 2008.

  7. Gagliardi, R. M. (1988). Introduction to communications engineering. New York: Wiley.

    Google Scholar 

  8. Ju, M., & Kim, I. M. (2010). Relay selection with ANC and TDBC protocols in bidirectional relay networks. IEEE Transactions on Communications, 58, 3500–3511.

    Article  Google Scholar 

  9. Krikidis, I. (2010). Relay selection for two-way relay channels with MABC DF: A diversity perspective. IEEE Transactions on Vehicular Technology, 59, 4620–4628.

    Article  Google Scholar 

  10. Liu, P., & Kim, I. M. (2010). Performance analysis of bidirectional communication protocols based on decode-and-forward relaying. IEEE Transactions on Communications, 58, 2683–2696.

    Article  Google Scholar 

  11. Kandukuri, S., & Boyd, S. (2002). Optimal power control in interference-limited fading wireless channels with outage-probability specifications. IEEE Transactions on Wireless Communications, 1, 46–55.

    Article  Google Scholar 

  12. Rankov, B., & Wittneben, A. (2007). Spectral efficient protocols for half-duplex fading relay channels. IEEE Journal on Selected Areas Communications, 25, 379–389.

    Article  Google Scholar 

  13. Rankov, B., & Wittneben, A. (2007). Spectral efficient signaling for half-duplex duplex relay channels. Proceeding of ACSSC, Pacific Grove, CA; Oct., 1066–1071.

  14. Cheng, H., & Yao, Y. (2010). Cognitive-relay-based intercell interference cancellation in cellular systems. IEEE Transactions on Vehicular Technology, 59, 1901–1909.

    Article  Google Scholar 

  15. Zhao, G., Yang, C., Li, G. Y., Li, D., & Soong, A. (2011). Power and channel allocation for cooperative relay in cognitive radio networks. IEEE Journal of Selected Topics in Signal Processing, 5, 151–159.

    Article  Google Scholar 

  16. Lee, J., Wang, H., Andrews, J., & Hong, D. (2011). Outage probability of cognitive relay networks with interference constraints. IEEE Transactions on Wireless Communications, 10, 390–395.

    Article  Google Scholar 

  17. Zou, Y., Zhu, J., Zheng, B., Tang, S., & Yao, Y. (2010). A cognitive transmission scheme with the best relay selection in cognitive radio networks. IEEE Globecom.

  18. Chen, H., Liu, J., Dong, Z., Zhou, Y., & Guo, W. (2011). Exact capacity analysis of partial relay selection under outdated CSI over rayleigh fading channels. IEEE Transactions on Vehicular Technology, 60, 4014–4018.

    Article  Google Scholar 

  19. Cho, S., Choi, W., & Huang, K. (2011). QoS provisioning relay selection in random relay networks. IEEE Transactions on Vehicular Technology, 60, 2680–2689.

    Article  Google Scholar 

  20. Simeone, O., Ness, Y., & Spagnolini, U. (2007). Stable throughput of cognitive radios with and without relaying capability. IEEE Transactions on Communications, 55, 2351–2360.

    Article  Google Scholar 

  21. Lee, K., & Yener, A. (2006). Outage performance of cognitive wireless relay networks. IEEE Globalcom.

  22. Suraweera, H. A., Smith, P. J., & Surobhi, N. A. (2008). Exact outage probability of cooperative diversity with opportunistic spectrum access. IEEE ICC, pp. 79–84.

  23. Mietzner, J., Lampe, L., & Schober, R. (2009). Distributed transmit power allocation for multihop cognitive-radio systems. IEEE Transactions on Wireless Communications, 8, 5187–5201.

    Article  Google Scholar 

  24. Cabric, D., Mishra, S., & Brodersen, R. W. (2004). Implementation issues in spectrum sensing for cognitive radio. In: Proceeding of asilomar conference on signals, systems and computers, Pacific Grove.

  25. Kang, H. G., Song, I., Yoon, S., & Kim, Y. H. (2010). A class of spectrum-sensing schemes for cognitive radio under impulsive noise circumstances: structure and performance in nonfading and fading environments. IEEE Transactions on Vehicular Technology, 59, 4322–4339.

    Article  Google Scholar 

  26. Sahai, A., & Cabric, D. (2005). Spectrum sensing: fundamental limits and practical challenges. Proceeding of IEEE international symposium on New Frontiers in dynamic spectrum access Networks (DySPAN), Baltimore.

  27. Koskie, S., & Gajic, Z. (2005). A Nash Game Algorithm for SINR-Based Power Control in 3G Wireless CDMA Networks. IEEE/ACM Transactions on Networking, 13, 1017–1026.

    Article  Google Scholar 

  28. Stuber, G. (1997). Principles of Mobile Communication. Dordrecht: Kluwer.

    Google Scholar 

  29. Rardin, R. L. (1998). Optimization in operations research. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  30. Hasna, M., & Alouini, M. (2003). End-to-end performance of transmission systems with relays over Rayleigh-fading channels. IEEE Transactions on Wireless Communications, 2, 1126–1131.

    Article  Google Scholar 

  31. Abramowitz, M., & Stegun, I. A. (1970). Handbook of Mathematical functions with formulas, Graphs, and Mathematical Tables (9th ed.). New York: Dover.

    Google Scholar 

  32. Torczon, V. (1997). On the convergence of pattern search algorithms. SIAM Journal on Optimization, 7, 1–25.

    Article  MATH  MathSciNet  Google Scholar 

  33. Lewis, R. M., & Torczon, V. (1999). Pattern search algorithms for bound constrained minimization. SIAM Journal on Optimization, 9, 1082–1099.

    Article  MATH  MathSciNet  Google Scholar 

  34. Lewis, R. M., & Torczon, V. (2000). Pattern search algorithms for linearly constrained minimization. SIAM Journal on Optimization, 10, 917–941.

    Article  MATH  MathSciNet  Google Scholar 

  35. Vasant, P., & Barsoum, N. (2010). Hybrid pattern search and simulated annealing for fuzzy production planning problems. Computers and Mathematics with Applications, 60, 1058–1067.

    Article  MATH  Google Scholar 

  36. Mariani, V. C., & Coelh, L. (2011). A hybrid shuffled complex evolution approach with pattern search for unconstrained optimization. Mathematics and Computers in Simulation, 81, 1901–1909.

    Article  MATH  MathSciNet  Google Scholar 

  37. Houck, C., Joines, J., & Kay, M. (1995). A genetic algorithm for function optimization: A Matlab Implementation. NCSU-IE TR, 1, 95–09.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Wang, L., Hua, J. et al. Power optimization for dynamic spectrum access with convex optimization and intelligent algorithm. Wireless Netw 21, 161–172 (2015). https://doi.org/10.1007/s11276-014-0775-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-014-0775-1

Keywords

Navigation