Skip to main content

Advertisement

Log in

An energy efficient joint localization and synchronization solution for wireless sensor networks using unmanned aerial vehicle

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Localization and synchronization are fundamental services for many applications in wireless sensor networks (WSNs), since it is often required to know the sensor nodes’ position and global time to relate a given event detection to a specific location and time. However, the localization and synchronization tasks are often performed after the sensor nodes’ deployment on the sensor field. Since manual configuration of sensor nodes is usually an impractical activity, it is necessary to rely on specific algorithms to solve both localization and clock synchronization problems of sensor nodes. With this in mind, in this work we propose a joint solution for the problem of 3D localization and time synchronization in WSNs using an unmanned aerial vehicle (UAV). A UAV equipped with GPS flies over the sensor field broadcasting its geographical position. Therefore, sensor nodes are able to estimate their geographical position and global time without the need of equipping them with a GPS device. Through simulation experiments, we show that our proposed joint solution reduces time synchronization and localization errors as well as energy consumption when compared to solutions found in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cyirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393–422.

    Article  Google Scholar 

  2. Jiang, X., Polastre, J., & Culler, D. (2005). Perpetual environmentally powered sensor networks. In IPSN ’05 (pp. 1–10).

  3. Zeng, K., Ren, K., Lou, W., & Moran, P. J. (2009). Energy aware efficient geographic routing in lossy wireless sensor networks with environmental energy supply. Wireless Network, 15(1), 39–51.

    Article  Google Scholar 

  4. Liu, R. S., Fan, K. W., Zheng, Z., & Sinha, P. (2011). Perpetual and fair data collection for environmental energy harvesting sensor networks. IEEE/ACM Transactions on Networking, 19(4), 947–960.

    Article  Google Scholar 

  5. Boukerche, A. (2008). Algorithms and protocols for wireless sensor networks. Hoboken: Wiley

    Book  Google Scholar 

  6. Akkaya, K., & Younis, M. (2005). A survey on routing protocols for wireless sensor networks. Ad Hoc Networks, 3(3), 325–349.

    Article  Google Scholar 

  7. Villas, L. A., Boukerche, A., Guidoni, D. L., de Oliveira, H. A., de Araujo, R. B., & Loureiro, A. A. (2013). An energy-aware spatio-temporal correlation mechanism to perform efficient data collection in wireless sensor networks. Computer Communications, 36(9), 1054–1066.

    Article  Google Scholar 

  8. Albowicz, J., Chen, A., & Zhang, L. (2001). Recursive position estimation in sensor networks. In ICNP ’01 (pp. 35–41).

  9. Niculescu, D., & Nath, B. (2003). Ad hoc positioning systems (aps) using oao. In IEEE INFOCOM ’03 (pp. 1734–1743).

  10. Oliveira, H. A. B. F., Boukerche, A., Nakamura, E. F., & Loureiro, A. A. F. (2009). Localization in time and space for wireless sensor networks: An efficient and lightweight algorithm. Performance Evaluation, 66(3–5), 209–222.

    Article  Google Scholar 

  11. Gupta, P., & Kumar, P. (2000). The capacity of wireless networks. IEEE Transactions on Information Theory, 46(2), 388–404.

    Article  MATH  MathSciNet  Google Scholar 

  12. Wang, G., & Yang, K. (2011). A new approach to sensor node localization using rss measurements in wireless sensor networks. IEEE Transactions on Wireless Communication, 10(5), 1389–1395.

    Article  Google Scholar 

  13. Ma, D., Er, M. J., & Wang, B. (2010). Analysis of hop-count-based source-to-destination distance estimation in wireless sensor networks with applications in localization. IEEE Transactions on Vehicular Technology, 59(6), 2998–3011.

    Article  Google Scholar 

  14. Guidoni, D. L., Boukerche, A., Villas, L. A., Souza, F. S. H., de Oliveira, H. A. B. F., & Loureiro, A. A. F. (2012). A small world approach for scalable and resilient position estimation algorithms for wireless sensor networks. In MOBIWAC ’12 (pp. 71–78).

  15. Galstyan, A., Krishnamachari, B., Lerman, K., & Pattem, S. (2009). Distributed online localization in sensor networks using a moving target. In IPSN ’09 (pp. 61–70).

  16. Deak, G., Curran, K., & Condell, J. (2012). A survey of active and passive indoor localisation systems. Computer Communications, 35(16), 1939–1954.

    Article  Google Scholar 

  17. He, Y., Liu, Y., Shen, X., Mo, L., & Dai, G. (2013). Noninteractive localization of wireless camera sensors with mobile beacon. IEEE Transactions on Mobile Computing, 12(2), 333–345.

    Article  Google Scholar 

  18. Yao, H., & Zhou, W. (2010). Synchronization algorithm for multi-hop in wireless sensor networks. In CIS ’10 (pp. 28–32).

  19. Maróti, M., Kusy, B., Simon, G., & Lédeczi, A. (2004). The flooding time synchronization protocol. In SenSys ’04 (pp. 39–49).

  20. Liu, Y., Li, J., & Guizani, M. (2012) Lightweight secure global time synchronization for wireless sensor networks. In IEEE WCNC ’12 (pp. 2312–2317).

  21. Sinan Yldrm, K., & Kantarc, A. (2014). Time synchronization based on slow flooding in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 25(1), 244–253.

    Article  Google Scholar 

  22. Wu, Y. C., Chaudhari, Q., & Serpedin, E. (2011). Clock synchronization of wireless sensor networks. IEEE Signal Processing Magazine, 28(1), 124–138.

    Article  Google Scholar 

  23. Wu, J., Jiao, L., & Ding, R. (2012). Average time synchronization in wireless sensor networks by pairwise messages. Computer Communications, 35(2), 221–233.

    Article  Google Scholar 

  24. Mica2 crossbow technology. Mica2 DataSheet. Document Part Number: 6020-0042-0. Resource document. http://www.eol.ucar.edu/isf/facilities/isa/internal/CrossBow/DataSheets/mica2.pdf. Accessed 2 Aug 2014.

  25. Lenzen, C., Sommer, P., & Wattenhofer, R. (2009). Optimal clock synchronization in networks. In SenSys ’09 (pp. 225–238).

  26. Li, Q., & Rus, D. (2006). Global clock synchronization in sensor networks. IEEE Transactions Computers, 55(2), 214–226.

    Article  Google Scholar 

  27. Golub, G. H., & Loan, C. F. V. (1996). Matrix Computations (3rd ed.). Baltimore, MD: Johns Hopkins University Press.

    MATH  Google Scholar 

  28. Sundararaman, B., Buy, U., & Kshemkalyani, A. D. (2005). Clock synchronization for wireless sensor networks: a survey. Ad Hoc Networks, 3(3), 281–323.

    Article  Google Scholar 

  29. Elson, J., Girod, L., & Estrin, D. (2002). Fine-grained network time synchronization using reference broadcasts. SIGOPS Operating Systems Review, 36, 147–163.

    Article  Google Scholar 

  30. Micaz crossbow technology. MicaZ DataSheet. Document Part Number: 6020-0060-04 Rev A. Resource document. http://www.openautomation.net/uploadsproductos/micaz_datasheet.pdf. Accessed 2 Aug 2014.

  31. Distributed Computing Group, ETH Zurich. Sinalgo: Simulator for network algorithms. http://dcg.ethz.ch/projects/sinalgo. Accessed 2 Aug 2014.

Download references

Acknowledgments

This work is partially supported by FAPESP (processes 2012/22550-0 and 2013/05403-66), CNPq, CAPES, FAPEMIG (process APQ-01947-12), and the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard W. Pazzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villas, L.A., Guidoni, D.L., Maia, G. et al. An energy efficient joint localization and synchronization solution for wireless sensor networks using unmanned aerial vehicle. Wireless Netw 21, 485–498 (2015). https://doi.org/10.1007/s11276-014-0802-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-014-0802-2

Keywords

Navigation