Skip to main content
Log in

Characterising the Pareto frontier of multiple access rate region: a study on the effect of decoding order on achievable performance

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

For a multiple access channel, each user has its own power constraint. However, when a multiple access channel is being considered as the dual of a broadcast channel, it must exploit the additional freedom in power allocation and the constraint should be a sum power constraint. Duality helps us to transform the non-convex problems in a broadcast channel to convex problems in a multiple access channel. This helps to solve sum-rate optimisation problems with linear power constraints. However, maximising the sum-rate does not completely characterise the entire rate region boundary, formally called as the Pareto frontier. This work first reviews some of the existing results of polymatroid formulation from the Pareto optimality perspective and then proposes a complete characterisation of the Pareto frontier to show its relationship with the sum-rate optimisation problem. The significance of decoding order on the achievable rate region is considered. The work also shows some of the decoding orders to be suboptimal in Pareto sense and proposes an algorithm to find the correct decoding order based on power allocation. Simulation results are presented to support the theoretical arguments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. This means all the elements of \({\mathcal {S}}'\) are decoded before the elements of \({\mathcal {S}}\).

  2. \(1\rightarrow 2\) means user \(1\) is decoded first, then after cancelling the interference, user \(2\) is decoded.

  3. It can be shown that these definitions satisfy the required properties of a norm for a \({\mathbb {C}}^M\) vector [3, Appendix A].

  4. This means all the elements of \({\mathcal {S}}\) are decoded before the elements of \({\mathcal {S}}'\).

  5. Developed by CVX Research Inc. Austin (TX), US.

References

  1. Annapureddy, V. S., & Veeravalli, V. V. (2009). Gaussian interference networks: Sum capacity in the low interference regime and new outer bounds on the capacity region. IEEE Transactions on Information Theory, 55(7), 3032–3050.

    Article  MathSciNet  Google Scholar 

  2. Boche, H., & Schubert, M. (2008). A superlinearly and globally convergent algorithm for power control and resource allocation with general interference functions. IEEE/ACM Transactions on Networking, 16(2), 383–395. doi:10.1109/TNET.2007.900362.

    Article  Google Scholar 

  3. Boyd, S., & Vandenberghe, L. (2004). Convex optimization (2nd ed.). New York: Cambridge University Press. doi:10.1016/B978-012428751-8/50019-7.

  4. Brehmer, J., Bai, Q., & Utschick, W. (2008). Time sharing solutions in MIMO broadcast channel utility maximization. In ITG Workshop on Smart Antennas (pp. 153–156). Wien.

  5. Edmonds, J. (1969). Submodular functions, matroids, and certain polyhedra. In International Conference on Combinatorial Structures and Applications (pp. 69–87). Calgary. http://link.springer.com/chapter/10.1007/3-540-36478-1_2

  6. Etkin, R. H., Tse, D. N. C., & Wang, H. (2008). Gaussian interference channel capacity to within one bit. IEEE Transactions on Information Theory, 54(12), 5534–5562.

    Article  MATH  MathSciNet  Google Scholar 

  7. Fung, C. H. F., Yu, W., & Lim, T. J. (2007). Precoding for the multiantenna downlink : Multiuser SNR gap and optimal user ordering. IEEE Transactions on Communications, 55(1), 188–197.

    Article  Google Scholar 

  8. Goldsmith, A. J., Jafar, S. A., Jindal, N., & Vishwanath, S. (2003). Capacity limits of MIMO channels. IEEE Journal on Selected Areas in Communications, 21(5), 684–702.

    Article  Google Scholar 

  9. Grant, M. C. (2004). Disciplined convex programming. Ph.D. thesis, Stanford University. http://www.stanford.edu/boyd/papers/pdf/mcg_thesis

  10. Huh, H., Papadopoulos, H., & Caire, G. (2009). MIMO broadcast channel optimization under general linear constraints. In International Symposium on Information Theory (pp. 2664–2668). Seoul. doi:10.1109/ISIT.2009.5205911

  11. Jafar, S. A., Foschini, G. J., & Goldsmith, A. J. (2004). PhantomNet: Exploring optimal multicellular multiple antenna systems. EURASIP Journal on Advances in Signal Processing (5), 591–604. doi:10.1155/S1110865704312072. http://asp.eurasipjournals.com/content/2004/5/691857

  12. Jindal, N., Vishwanath, S., & Goldsmith, A. J. (2004). On the duality of Gaussian multiple-access and broadcast channels. IEEE Transactions on Information Theory, 50(5), 768–783. doi:10.1109/TIT.2004.826646.

    Article  MATH  MathSciNet  Google Scholar 

  13. Lindblom, J., Karipidis, E., & Larsson, E. G. (2013). Efficient computation of Pareto optimal beamforming vectors for the MISO interference channel with successive interference cancellation. IEEE Transactions on Signal Processing, 61(19), 4782–4795.

    Article  MathSciNet  Google Scholar 

  14. Motahari, A. S., & Khandani, A. K. (2009). Capacity bounds for the Gaussian interference channel. IEEE Transactions on Information Theory, 55(2), 620–643.

    Article  MathSciNet  Google Scholar 

  15. Schubert, M., & Boche, H. (2007). A generic approach to QoS-based transceiver optimization. IEEE Transactions on Communications, 55(8), 1557–1566.

    Article  Google Scholar 

  16. Telatar, E. (1999). Capacity of multi-antenna Gaussian channels. European Transactions on Telecommunications, 10(6), 585–595.

    Article  Google Scholar 

  17. Tse, D. N. C., & Hanly, S. V. (1998). Multiaccess fading channels-part I: Polymatroid structure, optimal resource allocation and throughput capacities. IEEE Transactions on Information Theory, 44(7), 2796–2815.

    Article  MATH  MathSciNet  Google Scholar 

  18. Tse, D. N. C., & Viswanath, P. (2005). Fundamentals of wireless communication (1st ed.). New York: Cambridge University Press.

    Book  MATH  Google Scholar 

  19. Vishwanath, S., Jindal, N., & Goldsmith, A. J. (2003). Duality, achievable rates, and sum-rate capacity of Gaussian MIMO broadcast channels. IEEE Transactions on Information Theory, 49(10), 2658–2668. doi:10.1109/TIT.2003.817421.

    Article  MATH  MathSciNet  Google Scholar 

  20. Zhang, L., Zhang, R., Liang, Y. C., Xin, Y., & Poor, H. V. (2012). On Gaussian MIMO BC-MAC duality with multiple transmit covariance constraints. IEEE Transactions on Information Theory, 58(4), 2064–2078.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The work was supported by the Ministry of Education, Singapore Government Project Number RG42/12. The authors express their gratitude to editor Prof. Edmundo Monteiro and the reviewers for their advices to improve the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Barman Roy.

Appendix

Appendix

Let \(f(\mathbf{x}): \mathcal{F}\rightarrow\mathbb{R}\) be a concave function where \({\mathcal {F}}\subseteq {{\mathbb {R}}}^n\) is a convex set. Now consider \(m\) additional affine constraints \({\mathbf {Ax}}={\mathbf {y}}\) for some \({\mathbf {A}}\in {{\mathbb {R}}}^{m\times n}\) and \({\mathbf {y}}\in {{\mathbb {R}}}^m\). Denote the optimal value as \(\phi \left( {\mathbf {y}}\right)\).

$$\begin{aligned} \phi \left( {\mathbf {y}}\right) \equiv \max _{{\mathbf {x}}}f \left( {\mathbf {x}}\right) \end{aligned}$$

subject to \({\mathbf {x}}\in {\mathcal {F}}\) and \({\mathbf {Ax}}={\mathbf {y}}\). Let \({\mathcal {Y}}\subseteq {{\mathbb {R}}}^m\) be the set of \({\mathbf {y}}\) for which the problems (with additional constraints) are feasible.

Theorem 5

\(\phi :{\mathcal {Y}}\rightarrow {{\mathbb {R}}}\) is a concave function on its domain.

Proof

In presence of the additional constraints, the problem is a convex optimisation problem. Now for the additional constraint \({\mathbf {Ax}}={\mathbf {y}}_1\), let the solution be \({\mathbf {x}}_1^*\) and similarly for \({\mathbf {Ax}}={\mathbf {y}}_2\), let the solution be \({\mathbf {x}}_2^*\). Then

$$\begin{aligned} \phi \left( {\mathbf {y}}_1\right)&= f({\mathbf {x}}_1^*)\\ \phi \left( {\mathbf {y}}_2\right)&= f({\mathbf {x}}_2^*) \end{aligned}$$

and from feasibility conditions \({\mathbf {Ax}}_1^*={\mathbf {y}}_1\) and \({\mathbf {Ax}}_2^*={\mathbf {y}}_2\). Now for any \(\alpha \in [0, 1]\), consider the point

$$\begin{aligned} \alpha {\mathbf {x}}_1^*+(1-\alpha ){\mathbf {x}}_2^*\in {\mathcal {F}} \end{aligned}$$

which is a feasible point satisfying the constraints

$$\begin{aligned} {\mathbf {Ax}}=\alpha {\mathbf {y}}_1+(1-\alpha ){\mathbf {y}}_2 \end{aligned}$$

So \({\mathcal {Y}}\) is a convex region. Moreover

$$\begin{aligned}&\phi \left( \alpha {\mathbf {y}}_1+(1-\alpha ){\mathbf {y}}_2\right) \\&\ge\,f(\alpha {\mathbf {x}}_1^*+(1-\alpha )\,{\mathbf {x}}_2^*)\\&\ge\,\alpha f({\mathbf {x}}_1^*)+(1-\alpha )\,f({\mathbf {x}}_2^*)\\&=\alpha \phi ({\mathbf {y}}_1)+(1-\alpha )\phi ({\mathbf {y}}_2) \end{aligned}$$

where the second inequality follows from concavity of \(f\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barman Roy, S., Madhukumar, A.S. Characterising the Pareto frontier of multiple access rate region: a study on the effect of decoding order on achievable performance. Wireless Netw 21, 1537–1548 (2015). https://doi.org/10.1007/s11276-014-0863-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-014-0863-2

Keywords

Navigation