Skip to main content

Advertisement

Log in

Power controlled fair access protocol for wireless networked control systems

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Distributed networked control systems through wireless sensor and actuator networks have a tremendous potential to improve the efficiency of many large scale system. Designing a communication protocol that satisfies the stability and safety of networked control systems is a challenging task, because there is not yet a clear understanding of the interaction between communication and control layers in the overall system. In this paper, the main challenges to design a communication protocol for networked control systems are first clarified. Starting from these requirements, a power controlled fair access protocol is proposed where nodes send packets to their respective receivers within a broadcast range in the context of random access networks. The protocol design is based on a constrained optimization problem where the objective function is the information coverage of individual nodes subject to the state update interval constraint. The state update interval is the time elapsed between successful state vector reports derived from the networked control systems. A simple power control algorithm determines the transmit power of each node to satisfy their broadcast transmissions. A distributed channel access algorithm coordinates the channel access probability of individual nodes to achieve max–min fairness of the state update interval of a random access network. The proposed protocol is applied for a conflict detection and resolution of an air transportation system. Furthermore, the protocol is compared with the default MAC and TSMA protocol (Chlamtac and Farago in IEEE/ACM Trans Netw 2(1):23–29, 1994) under various scenarios. Simulation results indicate that the protocol significantly improves the information coverage while reducing the state update interval. The proposed algorithm converges very fast while meeting the heterogeneous requirement of networked control systems. It also guarantees fairness among various nodes compared to the default MAC and TSMA protocol. By improving the communication performance, the proposed protocol improves the control efficiency and meets the safety criteria for air transportation systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Antsaklis, P., & Baillieul, J. (2007). Special issue on technology of networked control systems. Proceedings of the IEEE, 95(1) 5–8.

  2. Hespanha, J. P., Naghshtabrizi, P., & Xu, Y. (2007). A survey of recent results in networked control systems. Proceedings of the IEEE, 95(1), 138–162.

    Article  Google Scholar 

  3. Kuchar, J. K., & Yang, L. C. (2000). A review of conflict detection and resolution modeling methods. IEEE Transactions on Intelligent Transportation Systems, 1(4), 179–189.

    Article  Google Scholar 

  4. Minimum Aviation System Performance Standard for Automatic Dependent Surveillance Broadcast (ADS-B), RTCA, 2002, DO-242A.

  5. Park, P., & Tomlin, C. (2012). Investigating communication infrastructure of next generation air traffic management. In ACM/IEEE ICCPS.

  6. Dowek, G., & Munoz, C. (2007). Conflict detection and resolution for 1, 2,..., N aircraft. In AIAA ATIO.

  7. ElBatt, T., & Ephremides, A. (2004). Joint scheduling and power control for wireless ad hoc networks. IEEE Transactions on Wireless Communications, 3(1), 74–85.

    Article  Google Scholar 

  8. Walsh, G., Beldiman, O., & Bushnell, L. (2001). Asymptotic behavior of nonlinear networked control systems. IEEE Transactions on Automatic Control, 46(7), 1093–1097.

    Article  MATH  MathSciNet  Google Scholar 

  9. Chlamtac, I., & Pinter, S. (1987). Distributed nodes organization algorithm for channel access in a multihop dynamic radio network. IEEE Transactions on Computers, 36(6), 728–737.

    Article  Google Scholar 

  10. Zander, J. (1992). Distributed cochannel interference control in cellular radio systems. IEEE Transactions on Vehicular Technology, 41(3), 305–311.

    Article  Google Scholar 

  11. Ulukus, S., & Yates, R. (1998). Stochastic power control for cellular radio systems. IEEE Transactions on Communications, 46(6), 784–798.

    Article  Google Scholar 

  12. Monks, J., Bharghavan, V., & Hwu, W.-M. (2001). A power controlled multiple access protocol for wireless packet networks. In IEEE INFOCOM.

  13. Yates, R. (1995). A framework for uplink power control in cellular radio systems. IEEE Journal on Selected Areas in Communications, 13(7), 1341–1347.

    Article  MathSciNet  Google Scholar 

  14. Park, P., Marco, P. D., Fischione, C., & Johansson, K. H. (2013). Modeling and optimization of the IEEE 802.15.4 protocol for reliable and timely communications. IEEE Transactions on Parallel and Distributed Systems, 24(3), 550–564.

    Article  Google Scholar 

  15. Monks, J., Ebert, J.-P., Wolisz, A., & Hwu, W. (2001). A study of the energy saving and capacity improvement potential of power control in multi-hop wireless networks. In IEEE LCN.

  16. Kleinrock, L., & Silvester, J. (1978). Optimum transmission radii packet radio networks or why six is a magic number. In IEEE National Telecommunications Conference.

  17. Hou, T.-C., & Li, V. (1986). Transmission range control in multihop packet radio networks. IEEE Transactions on Communications, 34(1), 38–44.

    Article  MathSciNet  Google Scholar 

  18. Wieselthier, J., Nguyen, G., & Ephremides, A. (2000). On the construction of energy-efficient broadcast and multicast trees in wireless networks. In IEEE INFOCOM.

  19. Rom, R., & Sidi, M. (1990). Multiple access protocols: Performance and analysis. Berlin: Springer.

    Book  MATH  Google Scholar 

  20. Ephremides, A., & Truong, T. (1990). Scheduling broadcasts in multihop radio networks. IEEE Transactions on Communications, 38(4), 456–460.

    Article  Google Scholar 

  21. Hajek, B., & Sasaki, G. (1988). Link scheduling in polynomial time. IEEE Transactions on Information Theory, 34(5), 910–917.

    Article  MATH  MathSciNet  Google Scholar 

  22. Ramanathan, S., & Lloyd, E. (1993). Scheduling algorithms for multihop radio networks. IEEE/ACM Transactions on Networking, 1(2), 166–177.

    Article  Google Scholar 

  23. Rhee, I., Warrier, A., Min, J., & Xu, L. (2009). DRAND: Distributed randomized TDMA scheduling for wireless ad hoc networks. IEEE Transactions on Mobile Computing, 8(10), 1384–1396.

    Article  Google Scholar 

  24. Garey, M. R., & Johnson, D. S. (1979). Computers and intractibility. San Francisco, CA: Freeman.

    Google Scholar 

  25. Chlamtac, I., & Kutten, S. (1985). On broadcasting in radio networksproblem analysis and protocol design. IEEE Transactions on Communications, 33(12), 1240–1246.

    Article  MATH  Google Scholar 

  26. Chlamtac, I., & Lerner, A. (1987). Fair algorithms for maximal link activation in multihop radio networks. IEEE Transactions on Communications, 35(7), 739–746.

    Article  Google Scholar 

  27. Banchs, A., Serrano, P., & Oliver, H. (2007). Proportional fair throughput allocation in multirate IEEE 802.11e wireless LANs. Wireless Networks, 13, 649–662.

    Article  Google Scholar 

  28. Bharghavan, V., Demers, A. J., Shenker, S., & Zhang, L. (1994). MACAW: A media access protocol for wireless LANs. In ACM SIGCOMM (pp. 212–225).

  29. Ozugur, T., Naghshineh, M., Kermani, P., Olsen, C. M., Rezvani, B., & Copeland, J. A. (1998). Balanced media access methods for wireless networks. In ACM MobiCom (pp. 21–32).

  30. Bensaou, B., Wang, Y., & Ko, C. C. (2000). Fair medium access in 802.11 based wireless ad-hoc networks. In ACM MobiHoc (pp. 99–106).

  31. Vaidya, N., Dugar, A., Gupta, S., & Bahl, P. (2005). Distributed fair scheduling in a wireless LAN. IEEE Transactions on Mobile Computing, 4(6), 616–629.

    Article  Google Scholar 

  32. Kelly, F. P., Maulloo, A. K., & Tan, D. K. H. (1998). Rate control for communication networks: Shadow prices, proportional fairness and stability. Journal of the Operational Research Society, 49, 237–252.

    Article  MATH  Google Scholar 

  33. Nandagopal, T., Kim, T.-E., Gao, X., & Bharghavan, V. (2000). Achieving MAC layer fairness in wireless packet networks. In ACM MobiCom (pp. 87–98).

  34. Liao, R.-F., & Campbell, A. (2001). A utility-based approach for quantitative adaptation in wireless packet networks. Wireless Networks, 7, 541–557.

    Article  MATH  Google Scholar 

  35. Wang, X., & Kar, K. (2004). Distributed algorithms for max-min fair rate allocation. In Allerton Conference.

  36. Tassiulas, L., & Sarkar, S. (2005). Maxmin fair scheduling in wireless ad hoc networks. IEEE Journal on Selected Areas in Communications, 23(1), 163–173.

    Article  Google Scholar 

  37. Sridharan, A., & Krishnamachari, B. (2009). Maximizing network utilization with max–min fairness in wireless sensor networks. Wireless Networks, 15, 585–600.

    Article  Google Scholar 

  38. Srivastava, V., & Motani, M. (2005). Cross-layer design: A survey and the road ahead. IEEE Communications Magazine, 43(12), 112–119.

    Article  Google Scholar 

  39. Goldsmith, A., & Wicker, S. (2002). Design challenges for energy-constrained ad hoc wireless networks. IEEE Wireless Communications, 9(4), 8–27.

    Article  Google Scholar 

  40. Dua, A. (2004). Power controlled random access. In IEEE ICC (pp. 3514–3518).

  41. Borbash, S., & Ephremides, A. (2006). Wireless link scheduling with power control and sinr constraints. IEEE Transactions on Information Theory, 52(11), 5106–5111.

    Article  MATH  MathSciNet  Google Scholar 

  42. Yang, B., Feng, G., Shen, Y., Long, C., & Guan, X. (2009). Channel-aware access for cognitive radio networks. IEEE Transactions on Vehicular Technology, 58(7), 3726–3737.

    Article  Google Scholar 

  43. Proakis, J. G. (1983). Digital communications. NY: McGraw-Hill.

    Google Scholar 

  44. Chiang, M., Low, S., Calderbank, A., & Doyle, J. (2007). Layering as optimization decomposition: A mathematical theory of network architectures. Proceedings of the IEEE, 95(1), 255–312.

    Article  Google Scholar 

  45. Gross, D., & Harris, C. M. (1998). Fundamentals of queueing theory. New York: Wiley Interscience.

    MATH  Google Scholar 

  46. Goussevskaia, O., Moscibroda, T., & Wattenhofer, R. (2008). Local broadcasting in the physical interference model. In ACM DIALM-POMC (pp. 35–44).

  47. Schafer, M., Strohmeier, M., Lenders, V., Martinovic, I., & Wilhelm, M. (2014). Bringing up OpenSky: A large-scale ADS-B sensor network for research. In ACM/IEEE IPSN (pp. 83–94).

  48. Chlamtac, I., & Farago, A. (1994). Making transmission schedules immune to topology changes in multi-hop packet radio networks. IEEE/ACM Transactions on Networking, 2(1), 23–29.

    Article  Google Scholar 

  49. Mitchell, I. M., Bayen, A. M., & Tomlin, C. J. (2005). A time-dependent Hamilton–Jacobi formulation of reachable sets for continuous dynamic games. IEEE Transactions on Automatic Control, 50(7), 947–957.

    Article  MathSciNet  Google Scholar 

  50. Jain, R., Chiu, D., & Hawe, W. (1984). A quantitative measure of fairness and discrimination for resource allocation in shared computer systems. Tech. Rep. Digital Equipment Corporation.

  51. Krozel, J., & Peters, M. (1997). Strategic conflict detection and resolution for free flight. In IEEE CDC (pp. 1822–1828).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pangun Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, P. Power controlled fair access protocol for wireless networked control systems. Wireless Netw 21, 1499–1516 (2015). https://doi.org/10.1007/s11276-014-0866-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-014-0866-z

Keywords

Navigation