Skip to main content

Advertisement

Log in

Performance evaluation of MADM-based methods for network selection in a multimedia wireless environment

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

As mobile devices have become more affordable, easy to use and powerful, the number of mobile users and their bandwidth demands have experienced a significant growth. Considering the rising popularity of power hungry applications (e.g., multimedia), battery power capacity is an important concern—as upgrades are not keeping up with the advances in other technologies (e.g., central processing unit and memory). Mobile users now demand better power and battery management techniques to prolong their mobile battery performance. This, together with the need for green information communications technology, provides motivation for researchers to develop energy efficient techniques to reduce the power consumption in next-generation wireless networks while meeting user’s quality expectations. This paper conducts a realistic performance evaluation of a number of widely used multi attribute decision making (MADM)-based methods for network selection that aim at keeping the mobile users Always Best Connected anywhere and anytime. The main trade-off parameters considered include energy efficiency and user perceived quality levels for multimedia streaming. The energy consumption is modeled using real experimental results for an android mobile device. Similarly, the multimedia quality function was modeled using real user data, combined with a qualitative study to determine the resulting mean opinion scores. The performance analysis shows that the weighted multiplicative method (MEW) finds a better energy-quality trade-off for users in a heterogeneous wireless environment in comparison with three other MADM solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. WiFi Mobilize. http://www.telekom-icss.com/wifimobilize.

  2. Adobe Flash Media Server. http://www.adobe.com/products/flashmediaserver/.

  3. Big Buck Bunny. http://www.bigbuckbunny.org/.

  4. Smooth Streaming Multi-Bitrate Calculator. http://alexzambelli.com/WMV/MBRCalc.html.

  5. Arduino Duemilanove. http://www.arduino.cc/en/Main/ArduinoBoardDuemilanove.

  6. eMobile Ireland. http://www.emobile.ie/.

References

  1. Cisco Systems, Inc. (2011). Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2010–2015. Resource Document. http://www.ieee802.org/3/ad_hoc/bwa/public/sep11/nowell_01_0911.pdf. Accessed September 22, 2014.

  2. Cisco Systems, Inc. (2014). Cisco Visual Networking Index: The Zettabyte Era. Resource Document. http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/VNI_Hyperconnectivity_WP.pdf. Accessed September 22, 2014.

  3. Cisco Systems, Inc. (2012). Cisco Visual Networking Index: Forecast and Methodology, 2011-2016. Resource Document. http://www.slideshare.net/zahidtg/cisco-vni-2012. Accessed September 22, 2014.

  4. Yeh, C.-H. (2002). A problem-based selection of multi-attribute decision-making methods. International Transactions in Operational Research, 9(2), 169–181. doi:10.1111/1475-3995.00348.

    Article  MATH  Google Scholar 

  5. Wang, H. J., Katz, R. H., & Giese, J. (1999). Policy-enabled handoffs across heterogeneous wireless networks. In Proceedings of Second IEEE Workshop on Mobile Computing Systems and Applications, 1999. WMCSA’99 (pp. 51–60). doi:10.1109/MCSA.1999.749277.

  6. Adamopoulou, E., Demestichas, K., Koutsorodi, A., & Theologou, M. (2005). Intelligent access network selection in heterogeneous networks—Simulation results. In 2nd International Symposium on Wireless Communication Systems, 2005 (pp. 279–283). doi:10.1109/ISWCS.2005.1547704.

  7. Tawil, R., Pujolle, G., & Salazar, O. (2008). A vertical handoff decision scheme in heterogeneous wireless systems. In IEEE Vehicular Technology Conference, 2008. VTC Spring 2008 (pp. 2626–2630). doi:10.1109/VETECS.2008.576.

  8. Nguyen-Vuong, Q.-T., Ghamri-Doudane, Y., & Agoulmine, N. (2008). On utility models for access network selection in wireless heterogeneous networks. In IEEE Network Operations and Management Symposium, 2008. NOMS 2008 (pp. 144–151). doi:10.1109/NOMS.2008.4575128.

  9. Bakmaz, B., BojkoviC, Z., & Bakmaz, M. (2007). Network selection algorithm for heterogeneous wireless environment. In IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications, 2007. PIMRC 2007 (pp. 1–4). doi:10.1109/PIMRC.2007.4394315.

  10. Bari, F., & Leung, V. C. M. (2007). Automated network selection in a heterogeneous wireless network environment. IEEE Network, 21(1), 34–40. doi:10.1109/MNET.2007.314536.

    Article  Google Scholar 

  11. Bari, F., & Leung, V. (2007). Multi-attribute network selection by iterative TOPSIS for heterogeneous wireless access. In 4th IEEE Consumer Communications and Networking Conference, 2007. CCNC 2007 (pp. 808–812). doi:10.1109/CCNC.2007.164.

  12. Trestian, R., Ormond, O., & Muntean, G. (2010). Power-friendly access network selection strategy for heterogeneous wireless multimedia networks. In 2010 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB) (pp. 1–5). doi:10.1109/ISBMSB.2010.5463147.

  13. Fülöp, J. (2005). Introduction to decision making methods. Laboratory of Operations Research and Decision Systems: Computer and Automation Institute, Hungarian Academy of Sciences. Resource Document. http://academic.evergreen.edu/projects/bdei/documents/decisionmakingmethods.pdf. Accessed 22 Sept 2014.

  14. Bari, F., & Leung, V. (2007). Application of ELECTRE to network selection in a hetereogeneous wireless network environment. In IEEE Wireless Communications and Networking Conference, 2007. WCNC 2007 (pp. 3810–3815). doi:10.1109/WCNC.2007.697.

  15. Cui, H., Yan, Q., Cai, Y., Gao, Y., & Wu, L. (2008). Heterogeneous network selection using a novel multi- attribute decision method. In Third International Conference on Communications and Networking in China, 2008. ChinaCom 2008 (pp. 153–157). doi:10.1109/CHINACOM.2008.4684991.

  16. Pervaiz, H. (2010). A Multi-criteria decision making (MCDM) network selection model providing enhanced QoS differentiation to customers. In 2010 International Conference on Multimedia Computing and Information Technology (MCIT) (pp. 49–52). doi:10.1109/MCIT.2010.5444854.

  17. Song, Q., & Jamalipour, A. (2005). A network selection mechanism for next generation networks. In 2005 IEEE International Conference on Communications, 2005. ICC 2005 (Vol. 2, pp. 1418–1422). doi:10.1109/ICC.2005.1494578.

  18. Yafang, W., Huimin, C., & Jinyan, Z. (2010). Network access selection algorithm based on the analytic hierarchy process and gray relation analysis. In 2010 4th International Conference on New Trends in Information Science and Service Science (NISS) (pp. 503–506).

  19. Fu, J., Wu, J., Zhang, J., Ping, L., & Li, Z. (2010). A novel AHP and GRA based handover decision mechanism in heterogeneous wireless networks. In R. Zhu, Y. Zhang, B. Liu, & C. Liu (Eds.), Information computing and applications (pp. 213–220). Berlin: Springer. Retrieved from http://link.springer.com/chapter/10.1007/978-3-642-16167-4_28

  20. Sgora, A., Vergados, D. D., & Chatzimisios, P. (2010). An access network selection algorithm for heterogeneous wireless environments. In 2010 IEEE Symposium on Computers and Communications (ISCC) (pp. 890–892). doi:10.1109/ISCC.2010.5546556.

  21. Mohamed, L., Leghris, C., & Adib, A. (2011). A hybrid approach for network selection in heterogeneous multi-access environments. In 2011 4th IFIP International Conference on New Technologies, Mobility and Security (NTMS) (pp. 1–5). doi:10.1109/NTMS.2011.5720658.

  22. Lahby, M., Cherkaoui, L., & Adib, A. (2012). An intelligent network selection strategy based on MADM methods in heterogeneous networks. International Journal of Wireless & Mobile Networks, 4(1), 83–96. doi:10.5121/ijwmn.2012.4106.

    Article  Google Scholar 

  23. Lahby, M., Cherkaoui, L., & Adib, A. (2012). Network selection decision based on handover history in heterogeneous wireless networks. arXiv:1206.1587 [cs]. Retrieved from http://arxiv.org/abs/1206.1587

  24. Bari, F., & Leung, V. C. M. (2007). Use of non-monotonic utility in multi-attribute network selection. In Wireless Telecommunications Symposium, 2007. WTS 2007 (pp. 1–8). doi:10.1109/WTS.2007.4563334.

  25. Zhang, W. (2004). Handover decision using fuzzy MADM in heterogeneous networks. In 2004 IEEE Wireless Communications and Networking Conference, 2004. WCNC (Vol. 2, pp. 653–658). doi:10.1109/WCNC.2004.

  26. Fan, J., Zhang, S., & Zhou, W. (2012). Energy-friendly network selection in heterogeneous wireless networks. In Vehicular Technology Conference (VTC Spring), 2012 IEEE 75th (pp. 1–5). doi:10.1109/VETECS.2012.6240119.

  27. Nkansah-Gyekye, Y., & Agbinya, J. I. (2008). A vertical handoff decision algorithm for next generation wireless networks. In 2008 Third International Conference on Broadband Communications, Information Technology Biomedical Applications (pp. 358–364). doi:10.1109/BROADCOM.2008.42.

  28. Lee, J. C., & Yoo, S.-M. (2012). Intelligent cell selection satisfying user requirements for inter-system handover in heterogeneous networks. Computer Communications, 35(17), 2106–2114. doi:10.1016/j.comcom.2012.06.014.

    Article  Google Scholar 

  29. Martínez-Morales, J. D., Pineda-Rico, U., & Stevens-Navarro, E. (2010). Performance comparison between MADM algorithms for vertical handoff in 4G networks. In 2010 7th International Conference on Electrical Engineering Computing Science and Automatic Control (CCE) (pp. 309–314). doi:10.1109/ICEEE.2010.5608646.

  30. Wang, L., & Binet, D. (2009). MADM-based network selection in heterogeneous wireless networks: A simulation study. In 1st International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace Electronic Systems Technology, 2009. Wireless VITAE 2009 (pp. 559–564). doi:10.1109/WIRELESSVITAE.2009.5172507.

  31. Stevens-Navarro, E., & Wong, V. W. S. (2006). Comparison between vertical handoff decision algorithms for heterogeneous wireless networks. In Vehicular Technology Conference, 2006. VTC 2006-Spring. IEEE 63rd (Vol. 2, pp. 947–951). doi:10.1109/VETECS.2006.1682964.

  32. Lahby, M., Cherkaoui, L., & Adib, A. (2012). An enhanced evaluation model for vertical handover algorithm in heterogeneous networks. arXiv:1206.1848 [cs]. Retrieved from http://arxiv.org/abs/1206.1848

  33. Karam, F. W., & Jensen, T. (2012). Performance analysis of ranking for QoS handover algorithm for selection of access network in heterogeneous wireless networks. In 2012 21st International Conference on Computer Communications and Networks (ICCCN) (pp. 1–6). doi:10.1109/ICCCN.2012.6289261.

  34. Trestian, R., Ormond, O., & Muntean, G.-M. (2012). Game theory-based network selection: solutions and challenges. IEEE Communications Surveys Tutorials, 14(4), 1212–1231. doi:10.1109/SURV.2012.010912.00081.

    Article  Google Scholar 

  35. Shenker, S. (1995). Fundamental design issues for the future internet. IEEE Journal on Selected Areas in Communications, 13(7), 1176–1188. doi:10.1109/49.414637.

    Article  Google Scholar 

  36. Kuo, W.-H., & Liao, W. (2008). Utility-based radio resource allocation for QoS traffic in wireless networks. IEEE Transactions on Wireless Communications, 7(7), 2714–2722. doi:10.1109/TWC.2008.070116.

    Article  Google Scholar 

  37. Cavalcanti, D., Nandiraju, N., Nandiraju, D., Agrawal, D. P., & Kumar, A. (2008). Connectivity opportunity selection in heterogeneous wireless multi-hop networks. Pervasive and Mobile Computing, 4(3), 390–420. doi:10.1016/j.pmcj.2007.12.003.

    Article  Google Scholar 

  38. Chamodrakas, I., & Martakos, D. (2011). A utility-based fuzzy TOPSIS method for energy efficient network selection in heterogeneous wireless networks. Applied Soft Computing, 11(4), 3734–3743. doi:10.1016/j.asoc.2011.02.003.

    Article  Google Scholar 

  39. Trestian, R., Ormond, O., & Muntean, G.-M. (2014). Enhanced power-friendly access network selection strategy for multimedia delivery over heterogeneous wireless networks. IEEE Transactions on Broadcasting, 60(1), 85–101. doi:10.1109/TBC.2014.

    Article  Google Scholar 

  40. Trestian, R., Moldovan, A., Muntean, C. H., Ormond, O., & Muntean, G.-M. (2012). Quality utility modelling for multimedia applications for android mobile devices. In 2012 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB) (pp. 1–6). doi:10.1109/BMSB.2012.6264328.

  41. Trestian, R., Ormond, O., & Muntean, G. (2012). On the impact of wireless network traffic location and access technology on mobile device energy consumption. In 2012 IEEE 37th Conference on Local Computer Networks (LCN) (pp. 200–203). doi:10.1109/LCN.2012.6423608.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramona Trestian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trestian, R., Ormond, O. & Muntean, GM. Performance evaluation of MADM-based methods for network selection in a multimedia wireless environment. Wireless Netw 21, 1745–1763 (2015). https://doi.org/10.1007/s11276-014-0882-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-014-0882-z

Keywords

Navigation