Skip to main content
Log in

Li-Fi: Light fidelity-a survey

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Visible light communication (VLC), which uses a vast unregulated and free light spectrum, has emerged to be a viable solution to overcome the spectrum crisis of radio frequency. Light fidelity (Li-Fi) is an optical networked communication in the subset of VLC to offload the mobile data traffics which offers many advantages at indoor scenario. In this article, we survey the key technologies for realizing Li-Fi and present the sate-of-the-art on each aspect, such as: indoor optical wireless channel model, the VLC modulation techniques with user satisfaction, OFDM in VLC, optical MIMO, optical spatial modulation, multiple user access, resource allocation, interference management and hybrid Li-Fi schemes. Some challenges and future work that need to be solved in the area are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cisco Visual Networking Index. (Feb. 2013). Global mobile data traffic forecast update, 2012–2017. CISCO: White paper.

  2. National Telecommunications and Information Admission(NTIA). (2003). FCC frequency allocation chart. Available http://www.Ntia.doc.gov/osmhome/allochrt

  3. Kavehrad, M. (2010). Sustainable energy-efficient wireless applications using light. IEEE Communications Magazine, 48(12), 66–73.

    Article  Google Scholar 

  4. Visible Light Communications Consortium. http://www.vlcc.net/

  5. Home Gigabit Access (OMEGA). http://www.ict-omega.eu/

  6. IEEE 802.15 WPAN Task Group 7 (TG7) Visible Light Communication. http://www.ieee802.org/15/pub/TG7.html

  7. Li-Fi Consortium. http://www.lificonsortium.org/

  8. OBrien, D., Minh, H. L., Zeng, L., Faulkner, G., Lee, K., Jung, D., et al. (2008). Indoor visible light communications: Challenges and prospects. Proceedings of SPIE Free-Space Laser Communications VIII, 7091, 1–9.

    Google Scholar 

  9. Jungnickel, V., Pohl, V., Noenning, S., & von Helmolt, C. (2002). A physical model for the wireless infrared communication channel. IEEE Journal on Selected Areas in Communications, 20(3), 631–640.

    Article  Google Scholar 

  10. Fath, T., & Haas, H. (2013). Performance comparison of MIMO techniques for optical wireless communications in indoor environments. IEEE Transactions on Communication, 61(2), 733–742.

    Article  Google Scholar 

  11. Wilkins, A., Veitch, J., & Lehman, B. (2010). LED lighting flicker and potential health concerns: IEEE standard PAR1789 update. In Proceedings of IEEE energy conversations congress expo, Atlanta, GA, USA (pp. 171–178).

  12. Dyble, M., Narendran, N., Bierman, A., & Klein, T. (2005). Impact of dimming white LEDs: Chromaticity shifts due to different dimming methods. In Proceedings of SPIE, 5941, 59411H1–9.

  13. Audeh, M., & Kahn, J. (1994). Performance evaluation of L-pulse-position modulation on non-directed indoor infrared channels. In Proceedings of IEEE international conference on communication, Vol. 4. New Orleans, LA, USA, pp. 660–664.

  14. Doshi, M., & Zane, R. (2010). Control of solid-state lamps using a multiphase pulsewidth modulation technique. IEEE Transactions on Power Electronics, 25(7), 1894–1904.

    Article  Google Scholar 

  15. Lee, K., & Park, H. (2011). Modulations for visible light communications with dimming control. IEEE Photonics Technology Letters, 23(16), 1136–1138.

    Article  Google Scholar 

  16. Suh, Y., Ahn, C. H., & Kwon, J. K. (2013). Dual-codeword allocation scheme for dimmable visible light communications. IEEE Photonics Technology Letters, 25(13), 1274–1277.

    Article  Google Scholar 

  17. Lee, S. H., & Kwon, J. K. (2012). Turbo code-based error correction scheme for dimmable visible light communication systems. IEEE Photonics Technology Letters, 24(17), 1463–1465.

    Article  Google Scholar 

  18. Kim, J., & Park, H. (2014). A coding scheme for visible light communication with wide dimming range. IEEE Photonics Technology Letters, 26(5), 465–468.

    Article  Google Scholar 

  19. Wjm, V. B., & Gj, V. V. B. (2004). Lighting for work: A review of visual and biological effects. Lighting Research and Technology, 36, 255–269.

    Article  Google Scholar 

  20. Park, J. Y., Ha, R.-Y., Ryu, V., Kim, E., & Jung, Y.-C. (2013). Effects of color temperature and brightness on electroencephalogram alpha activity in a polychromatic light-emitting diode. Clinical Psychopharmacology and Neuroscience, 11, 126–131.

    Article  Google Scholar 

  21. Ahn, K.-I., & Kwon, J. K. (2012). Color intensity modulation for multicolored visible light communications. IEEE Photonics Technology Letters, 24(24), 2254–2257.

    Article  Google Scholar 

  22. Monteiro, E., & Hranilovic, S. (2014). Design and implementation of color-shift keying for visible light communications. Journal of Lightwave Technology, 30(10), 2053–2060.

    Article  Google Scholar 

  23. Singh, R., O’Farrell, T., & David, J. P. R. (2014). An enhanced color shift keying modulation scheme for high-speed wireless visible light communications. Journal of Lightwave Technology, 32(14), 2582–2592.

    Article  Google Scholar 

  24. Butala, P. M., Chau, J. C., & Little, T. D. C. (2012). Metameric modulation for diffuse visible light communications with constant ambient lighting. In International workshop on optical wireless communications (IWOW), pp. 1–3.

  25. CIE (1931). Commission Internationale de lEclairage proceedings, Cambridge University Press.

  26. IEEE Standard for Local and Metropolitan Area Networks-Part 15.7: Short-Range Wireless Optical Communication Using Visible Light, IEEE Standard 802.15.7-2011, pp. 1–309, (Jun. 2011).

  27. Rajagopal, S., Roberts, R. D., & Lim, S. K. (2012). IEEE 802.15.7 visible light communication: Modulation schemes and dimming support. IEEE Communications Magazine, 50(3), 72–82.

    Article  Google Scholar 

  28. Kahn, J. M., & Barry, J. R. (1997). Wireless infrared communications. Proceedings of IEEE, 85, 265–298.

    Article  Google Scholar 

  29. Armstrong, J., & Lowery, A. J. (2006). Power efficient optical OFDM. Electronic Letters, 42(6), 370–372.

    Article  Google Scholar 

  30. Dissanayake, S. D., & Armstrong, J. (2013). Comparison of ACO-OFDM, DCO-OFDM and ADO-OFDM in IM/DD systems. Journal of Lightwave Technology, 31(7), 1063–1072.

    Article  Google Scholar 

  31. Wang, T. Q., Sekercioglu, Y. A., & Armstrong, J. (2013). Analysis of an optical wireless receiver using a hemispherical lens with application in MIMO visible light communications. Journal of Lightwave Technology, 31(11), 1744–1754.

    Article  Google Scholar 

  32. Zeng, L. B., O’Brien, D. C., Le Minh, H., Faulkner, G. E., Lee, K., Jung, D., et al. (2009). High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting. IEEE Journal on Selected Areas in Communications, 27(9), 1654–1662.

    Article  Google Scholar 

  33. Mesleh, R., Elgala, H., & Haas, H. (2011). Optical spatial modulation. Journal of Optical Communications Network, 3(3), 234–244.

    Article  Google Scholar 

  34. Zhang, X., Dimitrov, S., Sinanovic, S., & Haas, H. (2012). Optimal power allocation in spatial modulation OFDM for visible light communications. In 2012 IEEE 75th vehicular technology conference, New York.

  35. Stefan, I., Burchardt, H., & Haas, H. (2013). Area spectral efficiency performance comparison between VLC and RF femtocell networks. In 2013 IEEE international conference on communications (ICC), pp. 3825–3829.

  36. Huang, Z. T., & Ji, Y. F. (2012). Efficient user access and lamp selection in LED-based visible light communication network. Chinese Optics Letters, 10(5), 050602(1–5).

    MathSciNet  Google Scholar 

  37. Bykhovsky, D., & Arnon, S. (2014). Multiple access resource allocation in visible light communication systems. Journal of Lightwave Technology, 32(8), 1594–1600.

    Article  Google Scholar 

  38. Dang, J., & Zhang, Z. C. (2012). Comparison of optical OFDM-IDMA and optical OFDMA for uplink visible light communications. In 2012 International conference on wireless communications and signal processing (WCSP 2012).

  39. Guerra-Medina, M. F., Gonzalez, O., Rojas-Guillama, B., Martin-Gonzalez, J. A., Delgado, F., & Rabadan, J. (2012). Ethernet-OCDMA system for multi-user visible light communications. Electronic Letters, 48(4), 227–U170.

    Article  Google Scholar 

  40. Noshad, M., & Brandt-Pearce, M. (2014). Application of expurgated PPM to indoor visible light communications-part II: Access networks. Journal of Lightwave Technology, 32(5), 883–890.

    Article  Google Scholar 

  41. Djordjevic, I., & Vasic, B. (2004). Combinatorial constructions of optical orthogonal codes for OCDMA systems. IEEE Communications Letters, 8(6), 391–393.

    Article  Google Scholar 

  42. Camtepe, S. A., & Yener, B. (2007). Combinatorial design of key distribution mechanisms for wireless sensor networks. IEEE/ACM Transactions on Networking, 15(2), 346–358.

    Article  Google Scholar 

  43. Vasic, B., & Djordjevic, I. (2002). Low-density parity check codes for long-haul optical communication systems. IEEE Photonics Technology Letters, 14(8), 1208–1210.

    Article  Google Scholar 

  44. Noshad, M., & Brandt-Pearce, M. (2011). NLOS UV communication systems using spectral amplitude coding. In Proceedings of 2011 IEEE GLOBECOM Workshops, pp. 843–848.

  45. Chung, F., Salehi, J. A., & Wei, V. K. (1989). Optical orthogonal codes: Design, analysis and applications. IEEE Transactions on Information Theory, 35(3), 595–604.

    Article  MathSciNet  Google Scholar 

  46. Kim, S. M., & Kim, S. M. (2013). Wireless visible light communication technology using optical beamforming. Optics Engineering, 52(10), 1–6.

    Google Scholar 

  47. Remenyi, J., Varhegyi, P., Domjan, L., Koppa, P., & Lorincz, E. (2003). Amplitude, phase, and hybrid ternary modulation modes of a twisted-nematic liquid-crystal display at 400 nm. Applied Optics, 42(17), 3428–3434.

    Article  Google Scholar 

  48. Cui, K. Y., Quan, J. G., & Xu, Z. Y. (2013). Performance of indoor optical femtocell by visible light communication. Optics Communications, 298, 59–66.

    Article  Google Scholar 

  49. Chen, C., Serafimovski, N., & Haas, H. (2013). Fractional frequency reuse in optical wireless cellular networks. In IEEE 24th international symposium on personal indoor and mobile radio communications (PIMRC), pp. 3594–3598.

  50. Ghimire, B., & Haas, H. (2012). Self-organising interference coordination in optical wireless networks. Eurasip Journal on Wireless Communications and Networking, 131, 1–15.

    Google Scholar 

  51. Rahaim, M. B., Vegni, A. M., & Little, T. D. C. (2011). A hybrid radio frequency and broadcast visible light communication system. In Proceedings of IEEE GLOBECOM, pp. 792–796.

  52. Chowdhury, H., & Katz, M. (2014). Cooperative data download on the move in indoor hybrid (radio-optical) WLAN-VLC hotspot coverage. Transactions on Emerging Telecommunications Technologies, 25(6), 666–677.

    Article  Google Scholar 

  53. Huang, Z. T., & Ji, Y. F. (2013). Design and demonstration of room division multiplexing-based hybrid VLC network. Chinese Optics Letters, 11(6), 1–5.

    MathSciNet  Google Scholar 

  54. Hou, J. D., & OBrien, D. C. (2006). Vertical handover decision-making algo-rithm using fuzzy logic for the integrated radio-and-OW system. IEEE Transactions on Wireless Communications, 5(1), 176–185.

    Article  Google Scholar 

  55. Nguyen, T., Chowdhury, M. Z., & Jang, Y. M. (2013). A novel link switching scheme using pre-scanning and RSS prediction in visible light communication networks. Eurasip Journal on Wireless Communications and Networking, 293, 1–17.

  56. Vegni, A. M., & Little, T. D. C. (2012). Handover in VLC systems with cooperating mobile devices. In 2012 International conference on computing, networking and communications (ICNC), pp. 126–130.

  57. Bao, X., Zhu, X., Song, T., & Ou, Y. (2014). Protocol design and capacity analysis in hybrid network of visible light communication and OFDMA systems. IEEE Transactions on Vehicular Technology, 63(4), 1770–1778.

    Article  Google Scholar 

  58. Tsiatmas, A., Baggen, C. P. M. J., Willems, F. M. J., Linnartz, J. P. M. G., & Bergmans, J. W. M. (2014). An illumination perspective on visible light communications. IEEE Communications Magazine, 52(7), 64–71.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Natural Science Foundation of Jiangsu Province under Grant Nos. BK20130530 and BK2012831, the Programs of Senior Talent Foundation of Jiangsu University under Grant No. 11JDG130, the National Natural Science Foundation of China under Grant Nos. 61372125 and 61102054, and Open Research Fund of National Mobile Communications Research Laboratory, Southeast University under Grant No. 2013D08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Bao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, X., Yu, G., Dai, J. et al. Li-Fi: Light fidelity-a survey. Wireless Netw 21, 1879–1889 (2015). https://doi.org/10.1007/s11276-015-0889-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-0889-0

Keywords

Navigation