Abstract
Visible light communication (VLC), which uses a vast unregulated and free light spectrum, has emerged to be a viable solution to overcome the spectrum crisis of radio frequency. Light fidelity (Li-Fi) is an optical networked communication in the subset of VLC to offload the mobile data traffics which offers many advantages at indoor scenario. In this article, we survey the key technologies for realizing Li-Fi and present the sate-of-the-art on each aspect, such as: indoor optical wireless channel model, the VLC modulation techniques with user satisfaction, OFDM in VLC, optical MIMO, optical spatial modulation, multiple user access, resource allocation, interference management and hybrid Li-Fi schemes. Some challenges and future work that need to be solved in the area are also described.





Similar content being viewed by others
References
Cisco Visual Networking Index. (Feb. 2013). Global mobile data traffic forecast update, 2012–2017. CISCO: White paper.
National Telecommunications and Information Admission(NTIA). (2003). FCC frequency allocation chart. Available http://www.Ntia.doc.gov/osmhome/allochrt
Kavehrad, M. (2010). Sustainable energy-efficient wireless applications using light. IEEE Communications Magazine, 48(12), 66–73.
Visible Light Communications Consortium. http://www.vlcc.net/
Home Gigabit Access (OMEGA). http://www.ict-omega.eu/
IEEE 802.15 WPAN Task Group 7 (TG7) Visible Light Communication. http://www.ieee802.org/15/pub/TG7.html
Li-Fi Consortium. http://www.lificonsortium.org/
OBrien, D., Minh, H. L., Zeng, L., Faulkner, G., Lee, K., Jung, D., et al. (2008). Indoor visible light communications: Challenges and prospects. Proceedings of SPIE Free-Space Laser Communications VIII, 7091, 1–9.
Jungnickel, V., Pohl, V., Noenning, S., & von Helmolt, C. (2002). A physical model for the wireless infrared communication channel. IEEE Journal on Selected Areas in Communications, 20(3), 631–640.
Fath, T., & Haas, H. (2013). Performance comparison of MIMO techniques for optical wireless communications in indoor environments. IEEE Transactions on Communication, 61(2), 733–742.
Wilkins, A., Veitch, J., & Lehman, B. (2010). LED lighting flicker and potential health concerns: IEEE standard PAR1789 update. In Proceedings of IEEE energy conversations congress expo, Atlanta, GA, USA (pp. 171–178).
Dyble, M., Narendran, N., Bierman, A., & Klein, T. (2005). Impact of dimming white LEDs: Chromaticity shifts due to different dimming methods. In Proceedings of SPIE, 5941, 59411H1–9.
Audeh, M., & Kahn, J. (1994). Performance evaluation of L-pulse-position modulation on non-directed indoor infrared channels. In Proceedings of IEEE international conference on communication, Vol. 4. New Orleans, LA, USA, pp. 660–664.
Doshi, M., & Zane, R. (2010). Control of solid-state lamps using a multiphase pulsewidth modulation technique. IEEE Transactions on Power Electronics, 25(7), 1894–1904.
Lee, K., & Park, H. (2011). Modulations for visible light communications with dimming control. IEEE Photonics Technology Letters, 23(16), 1136–1138.
Suh, Y., Ahn, C. H., & Kwon, J. K. (2013). Dual-codeword allocation scheme for dimmable visible light communications. IEEE Photonics Technology Letters, 25(13), 1274–1277.
Lee, S. H., & Kwon, J. K. (2012). Turbo code-based error correction scheme for dimmable visible light communication systems. IEEE Photonics Technology Letters, 24(17), 1463–1465.
Kim, J., & Park, H. (2014). A coding scheme for visible light communication with wide dimming range. IEEE Photonics Technology Letters, 26(5), 465–468.
Wjm, V. B., & Gj, V. V. B. (2004). Lighting for work: A review of visual and biological effects. Lighting Research and Technology, 36, 255–269.
Park, J. Y., Ha, R.-Y., Ryu, V., Kim, E., & Jung, Y.-C. (2013). Effects of color temperature and brightness on electroencephalogram alpha activity in a polychromatic light-emitting diode. Clinical Psychopharmacology and Neuroscience, 11, 126–131.
Ahn, K.-I., & Kwon, J. K. (2012). Color intensity modulation for multicolored visible light communications. IEEE Photonics Technology Letters, 24(24), 2254–2257.
Monteiro, E., & Hranilovic, S. (2014). Design and implementation of color-shift keying for visible light communications. Journal of Lightwave Technology, 30(10), 2053–2060.
Singh, R., O’Farrell, T., & David, J. P. R. (2014). An enhanced color shift keying modulation scheme for high-speed wireless visible light communications. Journal of Lightwave Technology, 32(14), 2582–2592.
Butala, P. M., Chau, J. C., & Little, T. D. C. (2012). Metameric modulation for diffuse visible light communications with constant ambient lighting. In International workshop on optical wireless communications (IWOW), pp. 1–3.
CIE (1931). Commission Internationale de lEclairage proceedings, Cambridge University Press.
IEEE Standard for Local and Metropolitan Area Networks-Part 15.7: Short-Range Wireless Optical Communication Using Visible Light, IEEE Standard 802.15.7-2011, pp. 1–309, (Jun. 2011).
Rajagopal, S., Roberts, R. D., & Lim, S. K. (2012). IEEE 802.15.7 visible light communication: Modulation schemes and dimming support. IEEE Communications Magazine, 50(3), 72–82.
Kahn, J. M., & Barry, J. R. (1997). Wireless infrared communications. Proceedings of IEEE, 85, 265–298.
Armstrong, J., & Lowery, A. J. (2006). Power efficient optical OFDM. Electronic Letters, 42(6), 370–372.
Dissanayake, S. D., & Armstrong, J. (2013). Comparison of ACO-OFDM, DCO-OFDM and ADO-OFDM in IM/DD systems. Journal of Lightwave Technology, 31(7), 1063–1072.
Wang, T. Q., Sekercioglu, Y. A., & Armstrong, J. (2013). Analysis of an optical wireless receiver using a hemispherical lens with application in MIMO visible light communications. Journal of Lightwave Technology, 31(11), 1744–1754.
Zeng, L. B., O’Brien, D. C., Le Minh, H., Faulkner, G. E., Lee, K., Jung, D., et al. (2009). High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting. IEEE Journal on Selected Areas in Communications, 27(9), 1654–1662.
Mesleh, R., Elgala, H., & Haas, H. (2011). Optical spatial modulation. Journal of Optical Communications Network, 3(3), 234–244.
Zhang, X., Dimitrov, S., Sinanovic, S., & Haas, H. (2012). Optimal power allocation in spatial modulation OFDM for visible light communications. In 2012 IEEE 75th vehicular technology conference, New York.
Stefan, I., Burchardt, H., & Haas, H. (2013). Area spectral efficiency performance comparison between VLC and RF femtocell networks. In 2013 IEEE international conference on communications (ICC), pp. 3825–3829.
Huang, Z. T., & Ji, Y. F. (2012). Efficient user access and lamp selection in LED-based visible light communication network. Chinese Optics Letters, 10(5), 050602(1–5).
Bykhovsky, D., & Arnon, S. (2014). Multiple access resource allocation in visible light communication systems. Journal of Lightwave Technology, 32(8), 1594–1600.
Dang, J., & Zhang, Z. C. (2012). Comparison of optical OFDM-IDMA and optical OFDMA for uplink visible light communications. In 2012 International conference on wireless communications and signal processing (WCSP 2012).
Guerra-Medina, M. F., Gonzalez, O., Rojas-Guillama, B., Martin-Gonzalez, J. A., Delgado, F., & Rabadan, J. (2012). Ethernet-OCDMA system for multi-user visible light communications. Electronic Letters, 48(4), 227–U170.
Noshad, M., & Brandt-Pearce, M. (2014). Application of expurgated PPM to indoor visible light communications-part II: Access networks. Journal of Lightwave Technology, 32(5), 883–890.
Djordjevic, I., & Vasic, B. (2004). Combinatorial constructions of optical orthogonal codes for OCDMA systems. IEEE Communications Letters, 8(6), 391–393.
Camtepe, S. A., & Yener, B. (2007). Combinatorial design of key distribution mechanisms for wireless sensor networks. IEEE/ACM Transactions on Networking, 15(2), 346–358.
Vasic, B., & Djordjevic, I. (2002). Low-density parity check codes for long-haul optical communication systems. IEEE Photonics Technology Letters, 14(8), 1208–1210.
Noshad, M., & Brandt-Pearce, M. (2011). NLOS UV communication systems using spectral amplitude coding. In Proceedings of 2011 IEEE GLOBECOM Workshops, pp. 843–848.
Chung, F., Salehi, J. A., & Wei, V. K. (1989). Optical orthogonal codes: Design, analysis and applications. IEEE Transactions on Information Theory, 35(3), 595–604.
Kim, S. M., & Kim, S. M. (2013). Wireless visible light communication technology using optical beamforming. Optics Engineering, 52(10), 1–6.
Remenyi, J., Varhegyi, P., Domjan, L., Koppa, P., & Lorincz, E. (2003). Amplitude, phase, and hybrid ternary modulation modes of a twisted-nematic liquid-crystal display at 400 nm. Applied Optics, 42(17), 3428–3434.
Cui, K. Y., Quan, J. G., & Xu, Z. Y. (2013). Performance of indoor optical femtocell by visible light communication. Optics Communications, 298, 59–66.
Chen, C., Serafimovski, N., & Haas, H. (2013). Fractional frequency reuse in optical wireless cellular networks. In IEEE 24th international symposium on personal indoor and mobile radio communications (PIMRC), pp. 3594–3598.
Ghimire, B., & Haas, H. (2012). Self-organising interference coordination in optical wireless networks. Eurasip Journal on Wireless Communications and Networking, 131, 1–15.
Rahaim, M. B., Vegni, A. M., & Little, T. D. C. (2011). A hybrid radio frequency and broadcast visible light communication system. In Proceedings of IEEE GLOBECOM, pp. 792–796.
Chowdhury, H., & Katz, M. (2014). Cooperative data download on the move in indoor hybrid (radio-optical) WLAN-VLC hotspot coverage. Transactions on Emerging Telecommunications Technologies, 25(6), 666–677.
Huang, Z. T., & Ji, Y. F. (2013). Design and demonstration of room division multiplexing-based hybrid VLC network. Chinese Optics Letters, 11(6), 1–5.
Hou, J. D., & OBrien, D. C. (2006). Vertical handover decision-making algo-rithm using fuzzy logic for the integrated radio-and-OW system. IEEE Transactions on Wireless Communications, 5(1), 176–185.
Nguyen, T., Chowdhury, M. Z., & Jang, Y. M. (2013). A novel link switching scheme using pre-scanning and RSS prediction in visible light communication networks. Eurasip Journal on Wireless Communications and Networking, 293, 1–17.
Vegni, A. M., & Little, T. D. C. (2012). Handover in VLC systems with cooperating mobile devices. In 2012 International conference on computing, networking and communications (ICNC), pp. 126–130.
Bao, X., Zhu, X., Song, T., & Ou, Y. (2014). Protocol design and capacity analysis in hybrid network of visible light communication and OFDMA systems. IEEE Transactions on Vehicular Technology, 63(4), 1770–1778.
Tsiatmas, A., Baggen, C. P. M. J., Willems, F. M. J., Linnartz, J. P. M. G., & Bergmans, J. W. M. (2014). An illumination perspective on visible light communications. IEEE Communications Magazine, 52(7), 64–71.
Acknowledgments
This work is supported by the Natural Science Foundation of Jiangsu Province under Grant Nos. BK20130530 and BK2012831, the Programs of Senior Talent Foundation of Jiangsu University under Grant No. 11JDG130, the National Natural Science Foundation of China under Grant Nos. 61372125 and 61102054, and Open Research Fund of National Mobile Communications Research Laboratory, Southeast University under Grant No. 2013D08.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bao, X., Yu, G., Dai, J. et al. Li-Fi: Light fidelity-a survey. Wireless Netw 21, 1879–1889 (2015). https://doi.org/10.1007/s11276-015-0889-0
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11276-015-0889-0