Skip to main content
Log in

Delay-bandwidth product approach for unequal-width load balancing spectrum decisions in cognitive radio networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

A cognitive radio (CR) system scans a wide spectrum to find available channels. One of the key challenges in using these temporarily available spectrums is that bandwidths of the available spectrums are not equal. In addition, the issue of competition for a single channel by many secondary users must be resolved. This paper develops a load balancing spectrum decision scheme for CR networks with unequal-bandwidth, using the concept of the delay bandwidth (DB) product to select suitable unequal-width channels. Compared with other existing unequal bandwidth spectrum decision schemes, the proposed DB-based spectrum decision can improve the overall system throughput by up to 40 % in our simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Akyildiz, I. F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2006). Next generation/ dynamic spectrum access/ cognitive radio wireless networks: A survey. Computer Network, 50(13), 2127–2159.

    Article  MATH  Google Scholar 

  2. Yuan, Y., Bahl, P., Chandra, R., Moscibroda, T., & Wu, Y. (2007). Allocating dynamic time-spectrum blocks in cognitive radio networks. Proceedings of the 8th ACM International Symposium on Mobile ad hoc Networking and Computing, 130–139.

  3. Chandra, R., Mahajan, R., Moscibroda, T., Raghavendra, R., & Bahl, P. (2008). A case for adapting channel width in wireless networks. Proceedings of the ACM SIGCOMM 2008 conference on data communication, 135–146.

  4. Le, T. T., & Kim, D. S. (2014). An efficient throughput improvement through bandwidth awareness in cognitive radio networks. Journal of Communications and Networks, 16(2), 146–154.

    Article  Google Scholar 

  5. Anggraeni, P. N., Mahmood, N. H., Berthod, J., Chaussonniere, N., My, L., & Yomo, H. (2008). Dynamic channel selection for cognitive radios with heterogenous primary bands. Wireless Perss Communacation, 45(3), 369–384.

    Article  Google Scholar 

  6. Yuan, W., Liu, W., Cheng, W., & Wang, S. (2009). Variable-width channel allocation in wireless LAN: A game-theoretic perspective. IEEE International Conference on Communications, 1–6.

  7. Thoppian, M., Venkatesan, S., Prakash, R., & Chandrasekaran, R. (2006). Mac-layer scheduling in cognitive radio based multi-hop wireless networks. Mobile and Multimedia Networks: International Symposium on a World of Wireless.

  8. Hoang, A.T., Liang, Y.-C., & Islam, M. (2007). Maximizing throughput of cognitive radio networks with limited primary users’ cooperation. IEEE International Conference on Communications, 5177–5182.

  9. Kim, S. (2013). Cognitive radio bandwidth sharing scheme based on the two-way matching game. Wireless Personal Communications, 68(3), 893–905.

    Article  Google Scholar 

  10. Zhao, Q., Tong, L., Swami, A., & Chen, A. (2007). Decentralized cognitive mac for opportunistic spectrum access in ad hoc networks: A POMDP framework. IEEE Journal on Selected Areas in Communications, 25(3), 589–600.

    Article  Google Scholar 

  11. Talat, S., & Wang, L.-C. (2009). QoS-guaranteed channel selection scheme for cognitive radio networks with variable channel bandwidths. International Conference on Communications, Circuits and Systems, 2009. ICCCAS 2009, 241–245.

  12. Talat, S., & Wang, L.-C. (2012). Load-balancing spectrum decision for conitive radio networks with unequal-width channels. IEEE Vehicular Technology Conference, 1–5.

  13. Chu, F.-S., & Chen, K.-C. (2007). Radio resource allocation in OFDMA cognitive radio systems. IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 1–5.

  14. Lien, S.-Y., Tseng, C.-C., & Chen, K.-C. (2007). Novel rate-distance adaptation of multiple access protocols in cognitive radio. IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 1–5.

  15. Song, Y., Fang, Y., & Zhang, Y. (2007). Stochastic channel selection in cognitive radio networks. IEEE Global Telecommunications Conference, 4878–4882.

  16. Al-Fuqaha, A., Khan, B., Rayes, A., Guizani, M., Awwad, O., & Ben Brahim, G. (2008). Opportunistic channel selection strategy for better qos in cooperative networks with cognitive radio capabilities. IEEE Journal on Selected Areas in Communications, 26(1), 156–167.

    Article  Google Scholar 

  17. Zhu, P., Li, J., Han, K., & Wang, X. (2007). A new channel parameter for cognitive radio. International Conference on Cognitive Radio Oriented Wireless Networks and Communications, 482–486.

  18. Wang, L.-C., & Wang, C.-W. (2008). Spectrum handoff for cognitive radio networks: reactive-sensing or proactive-sensing? IEEE International on Performance, Computing and Communications Conference (IPCCC 2008), 343–348.

  19. Hoyhtya, M., Pollin, S., & Mammela, A. (2008). Performance improvement with predictive channel selection for cognitive radios. First International Workshop on Cognitive Radio and Advanced Spectrum Management, 1–5.

  20. Wang, L.-C., Wang, C.-W., & Adachi, F. (2011). Load-balancing spectrum decision for cognitive radio networks. IEEE Journal on Selected Areas in Communications (JSAC), 29(4), 757–769.

    Article  Google Scholar 

  21. Wang, L.-C., Wang, C.-W., & Chang, C.-J. (2012). Modeling and analysis for spectrum handoff in cognitive radio networks. IEEE Transactions on Mobile Computing, 11(9), 1499–1513.

    Article  Google Scholar 

  22. Peterson, L., & Davie, B. (2003). Computer networks: A system approach. Amsterdam: Elsevier.

    Google Scholar 

  23. Zhang, X., & Su, H. (2011). Cream-MAC: Cognitive radio-enabled multi-channel MAC protocol over dynamic spectrum access networks. IEEE Journal of Selected Topics in Signal Processing, 5(1), 110–123.

    Article  Google Scholar 

  24. Neely, M.J. (2008). Delay analysis for maximal scheduling in wireless networks with bursty traffic. IEEE INFOCOM.

  25. Gupta, G.R., & Shroff, N.B. (2011). Delay analysis and optimality of scheduling policies for multihop wireless networks. IEEE/ACM Transactions on Networking. 129–141.

  26. Chong, Jo Woon, Sung, Youngchul, & Sung, Dan Keun. (2009). RawPEACH: Multiband CSMA/CA-based cognitive radio networks. Journal of Communications and Networks, 11(2), 175–186.

    Article  Google Scholar 

  27. Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535–547.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Chun Wang.

Additional information

Part of the results of this work are published in IEEE VTC 2012, Fall.

Appendix: Derivation of channel selection probabilities

Appendix: Derivation of channel selection probabilities

In the two channel case shown in (22), the channel selection probabilities that a SU can select Ch (1) or Ch (2) for its operating channel is determined partly based on the busy probability (ρ) of the summation of all the PUs requesting each channel, and it also consists of the deliverable bits (R (m)) shown in (10).

Based on (3),(4), and (8), the allowable transmission time (D (m)) in (10) can be expressed as

$$\begin{aligned} D^{(m)}&= \left\{ \begin{array}{ll} T_f-T^{(m)}_s-W^{(m)}_{backoff}*T_{f}-t_o, &{} \hbox { if }s_i \ne s_{i+1} \\ T_f-T^{(m)}_s-W^{(m)}_{backoff}*T_{f}, &{} \hbox { if }s_i = s_{i+1} \\ \end{array} \right. \nonumber \\&= \left\{ \begin{array}{ll} T_f-T^{(m)}_s-\frac{n^{(m)} W_{max}}{\sum \nolimits _{m=1}^{2}{n^{(m)}}}*T_{f}-t_o, &{} \hbox { if }s_i \ne s_{i+1}\\ \\ T_f-T^{(m)}_s-\frac{n^{(m)} W_{max}}{\sum \nolimits _{m=1}^{2}{n^{(m)}}}*T_{f}, &{} \hbox { if } s_i = s_{i+1} \\ \end{array} \right. \nonumber \\&= \left\{ \begin{array}{ll} T_f\left( 1-\frac{n^{(m)} W_{max}}{\sum \nolimits _{m=1}^{2}{n^{(m)}}}\right) -T^{(m)}_s-t_o, &{} \hbox { if }s_i \ne s_{i+1} \\ \\ T_f\left( 1-\frac{n^{(m)} W_{max}}{\sum \nolimits _{m=1}^{2}{n^{(m)}}}\right) -T^{(m)}_s, &{} \hbox { if }s_i = s_{i+1} \\ \end{array} \right. \end{aligned}$$
(32)

Now, using (32), (20) and (21), The R (1) and R (2) can be expressed, respectively, as follows:

$$\begin{aligned} R^{(1)}= \left\{ \begin{array}{ll} \alpha ^{(1)}B_olog_{2}(1+SINR)\left( T_f\left( 1-\frac{n^{(1)} W_{max}}{\sum \nolimits _{m=1}^{2}{n^{(m)}}}\right) -T^{(1)}_s-t_o\right) , &{} \hbox { if }s_i \ne s_{i+1} \\ \\ \alpha ^{(1)}B_olog_{2}(1+SINR)\left( T_f\left( 1-\frac{n^{(1)} W_{max}}{\sum \nolimits _{m=1}^{2}{n^{(m)}}}\right) -T^{(1)}_{s}\right) , &{} \hbox { if }s_i = s_{i+1} \\ \end{array} \right. \end{aligned}$$
(33)

and

$$\begin{aligned} R^{(2)}= \left\{ \begin{array}{ll} \alpha ^{(2)}B_olog_{2}(1+SINR)\left( T_f\left( 1-\frac{n^{(2)} W_{max}}{\sum \nolimits _{m=1}^{2}{n^{(m)}}}\right) -T^{(2)}_s-t_o\right) , &{} \hbox { if }s_i \ne s_{i+1} \\ \\ \alpha ^{(2)}B_olog_{2}(1+SINR)\left( T_f\left( 1-\frac{n^{(2)} W_{max}}{\sum \nolimits _{m=1}^{2}{n^{(m)}}}\right) -T^{(2)}_s\right) , &{} \hbox { if } s_i = s_{i+1} \\ \end{array} \right. \end{aligned}$$
(34)

If \(\rho ^{(1)}=\rho ^{(2)}=\rho\) and \(T^{(1)}_s = T^{(1)}_s= T_s\). then applying (33) and (34) into (22), we can obtain

$$\begin{aligned} \left[\begin{array}{l} P(Ch^{(1)}|Ch^{(1)})\\ P(Ch^{(2)}|Ch^{(1)})\\ P(Ch^{(1)}|Ch^{(2)})\\ P(Ch^{(2)}|Ch^{(2)})\\ \end{array}\right] = \left[\begin{array}{l} P((1-\rho ) R^{(1)}\geqslant (1-\rho ^) R^{(2)}) \\ P((1-\rho ) R^{(2)}> (1-\rho ) R^{(1)})\\ P((1-\rho ) R^{(1)}> (1-\rho ) R^{(2)})\\ P((1-\rho ) R^{(2)}\geqslant (1-\rho ) R^{(1)})\\ \end{array}\right] \end{aligned}$$
$$\begin{aligned} = \left[\begin{array}{l} P\left( \alpha ^{(1)}\left( T_f\left( 1-\frac{n^{(1)} W_{max}}{\sum \nolimits _{m=1}^{2}{n^{(m)}}}\right) -T_s\right) \geqslant \alpha ^{(2)}\left( T_f\left( 1-\frac{n^{(2)} W_{max}}{\sum \nolimits _{m=1}^{2}{n^{(m)}}}\right) -T_s-t_o\right) \right) \\ \\ P\left( \alpha ^{(2)}\left( T_f\left( 1-\frac{n^{(2)} W_{max}}{\sum \nolimits _{m=1}^{2}{n^{(m)}}}\right) -T_s-t_o\right) > \alpha ^{(1)}\left( T_f\left( 1-\frac{n^{(1)} W_{max}}{\sum \nolimits _{m=1}^{2}{n^{(m)}}}\right) -T_s\right) \right) \\ \\ P\left( \alpha ^{(1)}\left( T_f\left( 1-\frac{n^{(1)} W_{max}}{\sum \nolimits _{m=1}^{2}{n^{(m)}}}\right) -T_s-t_o\right) > \alpha ^{(2)}\left( T_f\left( 1-\frac{n^{(2)} W_{max}}{\sum \nolimits _{m=1}^{2}{n^{(m)}}}\right) -T_s\right) \right) \\ \alpha ^{(2)}\left( T_f\left( 1-\frac{n^{(2)} W_{max}}{\sum \nolimits _{m=1}^{2}{n^{(m)}}}\right) -T_s\right) \geqslant \alpha ^{(1)}\left( T_f\left( 1-\frac{n^{(1)} W_{max}}{\sum \nolimits _{m=1}^{2}{n^{(m)}}})-T_s-t_o\right) \right) \\ \\ \end{array}\right] \end{aligned}$$
$$\begin{aligned} =\left[\begin{array}{l} P\left( {n^{(1)}}\geqslant {\left[ \frac{T_f-T_s}{T_f} \left( 1-\frac{\alpha ^{(2)}}{\alpha ^{(1)}}\frac{t_o}{T_f-T_s}\right) \right] } \frac{{\sum \nolimits _{m=1}^{2}{n^{(m)}}}}{W_{max}} + \frac{\alpha ^{(2)}}{\alpha ^{(1)}}n^{(2)}\right) \\ \\ P\left( {n^{(1)}}< {\left[ {\frac{T_f-T_s}{T_f} \left( 1-\frac{\alpha ^{(2)}}{\alpha ^{(1)}}\frac{t_o}{T_f-T_s}\right) }\right] } \frac{{\sum \nolimits _{m=1}^{2}{n^{(m)}}}}{W_{max}} + \frac{\alpha ^{(2)}}{\alpha ^{(1)}}n^{(2)}\right) \\ \\ P\left( {n^{(2)}}\ < {\left[ {\frac{T_f-T_s}{T_f} \left( 1-\frac{\alpha ^{(1)}}{\alpha ^{(2)}}\frac{t_o}{T_f-T_s}\right) }\right] } \frac{{\sum \nolimits _{m=1}^{2}{n^{(m)}}}}{W_{max}} + \frac{\alpha ^{(1)}}{\alpha ^{(2)}}n^{(1)}\right) \\ \\ P\left( {n^{(2)}}\geqslant {\left[ {\frac{T_f-T_s}{T_f} \left( 1-\frac{\alpha ^{(1)}}{\alpha ^{(2)}}\frac{t_o}{T_f-T_s}\right) }\right] } \frac{{\sum \nolimits _{m=1}^{2}{n^{(m)}}}}{W_{max}} + \frac{\alpha ^{(1)}}{\alpha ^{(2)}}n^{(1)}\right) \\ \end{array}\right] \end{aligned}$$
(35)

This can be generalized for the multiple channel case, where the probability to move from \(Ch^{(i_1)}\) to \(Ch^{(i_2)}\) is defined as

$$\begin{aligned}&P(Ch^{(i_2)}|Ch^{(i_1)}) \nonumber \\&= {P\left( {n^{(i_1)}} < {\left[ {\frac{T_f-T_s}{T_f} \left( 1-\frac{\alpha ^{(i_2)}}{\alpha ^{(i_1)}} \frac{t_o}{T_f-T_s}\right) }\right] }\frac{{\sum \nolimits _{m=1}^{M}{n^{(m)}}}}{W_{max}} + \frac{\alpha ^{(i_2)}}{\alpha ^{(i_1)}}n^{(i_2)}\right) } \; . \end{aligned}$$
(36)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talat, S.T., Wang, LC. Delay-bandwidth product approach for unequal-width load balancing spectrum decisions in cognitive radio networks. Wireless Netw 21, 2101–2113 (2015). https://doi.org/10.1007/s11276-015-0895-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-0895-2

Keywords

Navigation