Skip to main content
Log in

Robust collaborative relay beamforming design for two-way relay systems with reciprocal CSI

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, we propose a robust collaborative relay beamforming scheme in the presence of imperfect channel state information (CSI) for a multiple single-antenna two-way relays network with reciprocal channels. Many existing beamforming schemes have been investigated using perfect CSI for relay-aided systems. However, in practical communication systems the channel estimation is always inaccurate at relay nodes, leading to the deviation between the true CSI and the estimated CSI. Aiming to tackle the performance degradation caused by the CSI mismatch, a constrained optimization problem corresponding to the robust relay beamforming vector is formulated, in which the channel estimation error is characterized by the stochastic error model. Herein the commonly used performance metric, expected weighted sum mean squared error, is adopted as design objective to evaluate the overall link reliability. It is found that due to the intractable expression of the cost function, we can not resort to the traditional methods for solving the involved optimization problem. Whereas, by exploring the lower bound of the cost function using Jensen’s inequality and the Taylor series expansion, the original optimization problem is recast to a convex optimization in the form of Rayleigh–Ritz ratio, which results in a closed-form robust relay beamforming solution. Numerical results verify the robustness and superiority of the proposed scheme against CSI errors in terms of system sum rate and average BER.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jing, Y., & Jafarkhani, H. (2009). Network beamforming using relays with perfect channel information. IEEE Transactions on Information Theory, 55(6), 2499–2517.

    Article  MathSciNet  Google Scholar 

  2. Raeisi, A., Mahboobi, B., Zokaei, S., & Ardebilipour, M. (2011). Near-optimal power aware routing for amplify-and-forward multi-hop networks. In Proceeedings of IEEE GCC conference and exhibition (pp. 521–524). Dubai.

  3. Ji, B., Song, K., Huang, Y., & Yang, L. (2012). A cooperative relay selection for two way cooperative relay networks in Nakagami channels. Wireless Personal Communications, 71(3), 2045–2065.

    Article  Google Scholar 

  4. Sun, F., Kim, T. M., Paulraj, A. J., de Carvalho, E., & Popovski, P. (2013). Cell-edge multi-user relaying with overhearing. IEEE Communications Letters, 17(6), 1160–1163.

    Article  Google Scholar 

  5. Liu, H., Sun, F., de Carvalho, E., Popovski, P., & Thomsen, H. (2013). MIMO four-way relaying. In International workshop on signal processing advances for wireless communications (SPAWC) (pp. 46–50). Darmstadt.

  6. Parzysz, F., Vu, M., & Gagnon, F. (2014). Impact of propagation environment on energy-efficient relay palcement: Model and performance analysis. IEEE Transacions on Wireless Communications, 13(4), 2214–2228.

    Article  Google Scholar 

  7. Wang, R., & Tao, M. (2012). Joint source and relay precoding designs for MIMO two-way relaying based on MSE criterion. IEEE Transacions on Wireless Communications, 60(3), 1352–1365.

    MathSciNet  Google Scholar 

  8. Farhadi, G., & Beaulieu, N. C. (2010). Capacity of amplify-and-forward multihop relaying systems under adaptive transmission. IEEE Transacions on Communications, 58(3), 758–763.

    Article  Google Scholar 

  9. Zhu, Y., Kam, P.-Y., & Xin, Y. (2010). Differential modulation for decode-and-forward multiple relay systems. IEEE Transacions on Communications, 58(1), 189–199.

    Article  Google Scholar 

  10. Liu, Z., Uppal, M., Stankovic, V., & Xiong, Z. (2009). Compress-forward coding with BPSK modulation for the half-duplex Gaussian relay channel. IEEE Transactions on Signal Processing, 57(11), 4467–4481.

    Article  MathSciNet  Google Scholar 

  11. Thai, C., Popovski, P., de Carvalho, E., & Sun, F. (2013). Diversity-multiplexing trade-off for coordinated direct and relay schemes. IEEE Transacions on Wireless Communications, 12(7), 3289–3299.

    Article  Google Scholar 

  12. Zeng, M., Zhang, R., & Cui, S. (2010). Distributed beamforming for two-way relay networks with reciprocal channels. In IEEE Asilomar conference on signals, systems and computers (ASILOMAR) (pp. 882–886). Pacific Grove, CA.

  13. Huang, Y., Yang, L., Bengtsson, M., & Ottersten, B. (2010). A limited feedback joint precoding for amplify-and-forward relaying. IEEE Transactions on Signal Processing, 58(3), 1347–1357.

    Article  MathSciNet  Google Scholar 

  14. Li, C., Yang, L., & Zhu, W.-P. (2010). Two-way MIMO relay precoder design with channel state information. IEEE Transactions on Communications, 58(12), 3358–3363.

    Article  Google Scholar 

  15. Rankov, B., & Wittneben, A. (2007). Spectral efficient protocols for half duplex fading relay channels. IEEE Journal on Selected Areas in Communications, 25(2), 379–389.

    Article  Google Scholar 

  16. Cui, T., Gao, F., & Tellambura, C. (2009). Differential modulation for two-way wireless communications: A perspective of differential network coding at the physical layer. IEEE Transactions on Communications, 57(10), 2977–2987.

    Article  Google Scholar 

  17. Bölcskei, H., Nabar, R. U., Oyman, Ö., & Paulraj, A. J. (2006). Capacity scaling laws in MIMO relay networks. IEEE Transactions on Wireless Communications, 5(6), 1433–1444.

    Article  Google Scholar 

  18. Khoshnevis, B., Yu, W., & Adve, R. (2008). Grassmannian beamforming for MIMO amplify-and-forward relaying. IEEE Journal on Selected Areas in Communications, 26(8), 1397–1407.

    Article  Google Scholar 

  19. Cui, S., Goldsmith, A. J., & Bahai, A. (2004). Energy-efficiency of MIMO and cooperative MIMO in sensor networks. IEEE Journal on Selected Areas in Communications, 22(6), 1089–1098.

    Article  Google Scholar 

  20. Havary-Nassab, V., Shahbazpanahi, S., & Grami, A. (2010). Optimal distributed beamforming for two-way relay networks. IEEE Transactions on Signal Processing, 58(3), 1238–1250.

    Article  MathSciNet  Google Scholar 

  21. Li, C., Yang, L., & Shi, Y. (2010). An asymptotically optimal cooperative relay scheme for two-way relaying protocol. IEEE Signal Processing Letters, 17(2), 145–148.

    Article  Google Scholar 

  22. Zeng, M., Zhang, R., & Cui, S. (2011). On design of collaborative beamforming for two-way relay networks. IEEE Transactions on Signal Processing, 59(5), 2284–2295.

    Article  MathSciNet  Google Scholar 

  23. ShahbazPanahi, S., & Dong, M. (2012). Achievable rate region under joint distributed beamforming and power allocation for two-way relay networks. IEEE Transactions on Wireless Communications, 11(11), 4026–4037.

    Article  Google Scholar 

  24. Sun, F., Carvalho, E. D., Thai, C., & Popovski, P. (2012). Beamforming design for coordinated direct and relay systems. In Proceedings of 46th annual conference on information sciences and systems (CISS) (pp. 1–6). Princeton, NJ.

  25. Botros, M., & Davidson, T. N. (2007). Convex conic formulations of robust downlink precoder designs with quality of service constraints. IEEE Journal on Selected in Topics Signal Processing, 1(4), 714–724.

    Article  Google Scholar 

  26. Ubaidulla, P., & Chockalingam, A. (2010). Robust relay precoder design for MIMO-relay networks. In Proceedings of the IEEE wireless communications and networking conference (WCNC) (pp. 1–6). Sydney, Australia.

  27. Xiang, Z., & Tao, M. (2012). Robust beamforming for wireless information and power transmission. IEEE Wireless Communications Letters, 1(4), 372–375.

    Article  Google Scholar 

  28. Loyka, S., & Charalambous, C. D. (2012). On the compound capacity of a class of MIMO channels subject to normed uncertainty. IEEE Transaction on Information Theory, 58(4), 2048–2063.

    Article  MathSciNet  Google Scholar 

  29. Zhang, H., Song, K., Huang, Y., & Yang, L. (2013). Energy harvesting balancing technique for robust beamforming in multiuser MISO SWIPT system. In Proceedings of IEEE international conference on wireless communications & signal processing (WCSP) (pp. 1–5). Hangzhou, China.

  30. Zhang, X., Palomar, D. P., & Ottersten, B. (2008). Statistically robust design of linear MIMO transceivers. IEEE Transactions on Signal Processing, 56(8), 3678–3689.

    Article  MathSciNet  Google Scholar 

  31. Gharavol, E., & Larsson, E. (2011). Robust joint optimization of MIMO two way relay channels with imperfect CSI. In Proceedings of IEEE annual Allerton conference on communication, control, and computing (pp. 1657–1664). Monticello, IL.

  32. Tao, M., & Wang, R. (2012). Robust relay beamforming for two-way relay networks. IEEE Communications Letters, 16(7), 1052–1055.

    Article  Google Scholar 

  33. Mo, R., Chew, Y. H., & Yuen, C. (2012). Information rate and relay precoder design for amplify-and-forward MIMO relay networks with imperfect channel state information. IEEE Transactions on Vehicular Technology, 61(9), 3958–3968.

    Article  Google Scholar 

  34. Wang, J., Wang, Y., Gui, X., & Zhang, P. (2013). Robust relay precoding design for two way relay systems with delayed and limited feedback. IEEE Communications Letters, 17(4), 689–692.

    Article  Google Scholar 

  35. Wang, Z., & Chen, W. (2013). Relay beamforming design with SIC detection for MIMO multi-relay networks with imperfect CSI. IEEE Transactions on Vehicular Technology, 62(8), 3774–3785.

    Article  Google Scholar 

  36. Shen, H., Wang, J., Levy, B. C., & Zhao, C. (2013). Robust optimization for amplify-and-forward MIMO relaying from a worst-case perspective. IEEE Transactions on Signal Processing, 61(21), 5458–5471.

    Article  Google Scholar 

  37. Shen, H., Xu, W., & Zhao, C. (2014). Robust transceiver for AF MIMO relaying with direct link: A globally optimal solution. IEEE Transactions on Signal Processing Letters, 21(8), 947–951.

    Article  Google Scholar 

  38. Aziz, A., Thron, C., Cui, S., & Georghiades, C. (2014). Linearized Robust beamforming for two-way relay systems. IEEE Signal Processing Letters, 21(8), 1017–1021.

    Article  Google Scholar 

  39. Li, Q., Zhang, Q., & Qin, J. (2014). Robust beamforming for cognitive multi-antenna relay networks with bounded channel uncertainties. IEEE Transactions on Communications, 62(2), 478–487.

    Article  MathSciNet  Google Scholar 

  40. Liu, T., Yang, C., & Yang, L.-L. (2013). A unified analysis of spectral efficiency for two-hop relay systems with different resource configurations. IEEE Transactions on Vehicular Technology, 62(7), 3137–3148.

    Article  Google Scholar 

  41. Zhang, R., Liang, Y.-C., Chai, C. C., & Cui, S. (2009). Optimal beamforming for two-way multi-antenna relay channel with analogue network coding. IEEE Journal on Selected Areas in Communications, 27(5), 699–712.

    Article  Google Scholar 

  42. Müller, R. (2002). A random matrix model of communication via antenna arrays. IEEE Transactions on Information Theory, 48(9), 2495–2506.

    Article  MATH  Google Scholar 

  43. Wang, C., Au, E. K. S., Murch, R. D., Mow, W. H., Cheng, R. S., & Lau, V. (2007). On the performance of the MIMO zero-forcing receiver in the presence of channel estimation error. IEEE Transactions on Wireless Communications, 6(3), 805–810.

    Article  Google Scholar 

  44. Rong, Y. (2011). Robust design for linear non-regenerative MIMO relays with imperfect channel state information. IEEE Transactions on Signal Processing, 59(5), 2455–2460.

    Article  MathSciNet  Google Scholar 

  45. Yi, Z., & Kim, I.-M. (2007). Joint optimization of relay-precoders and decoders with partial channel side information in cooperative networks. IEEE J. Sel. Areas Commun., 25(2), 447–458.

    Article  MathSciNet  Google Scholar 

  46. Song, K., Ji, B., Huang, Y., & Yang, L. (2013). Performance of antenna selection for two-way relay networks with physical network coding. In Proceedings of IEEE international conference on wireless communications & signal processing (WCSP) (pp. 1–5). Hangzhou, China.

  47. Hwang, I., Song, B., & Soliman, S. (2013). A holistic view on hyper-dense heterogeneous and small cell networks. IEEE Communications Magazine, 51, 20–27.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grants 61372101, 61201172, 61271018, 61201176 and 61401205, the National Science and Technology Major Project of China under Grants 2012ZX03004-005-003 and 2013ZX03003-006-002, Research Project of Jiangsu Province under Grants BE2012167 and BK2011019, the Joint Fund of the National Natural Science Foundation of China (Grant No. U1404615) and Open Funds of State Key Laboratory of Millimeter Waves (Grant No. K201504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luxi Yang.

Appendix

Appendix

Here we will give the derivation of \(\mathop E\limits _{\Delta _{\mathbf{h}},\Delta _{\mathbf{g}}} {\left\{ {\mathrm{{SIN}}{\mathrm{{R}}_{{s_i}}}} \right\} _{appr}}\) in (15). Let us take \(\mathop E\limits _{\Delta _{\mathbf{h}},\Delta _{\mathbf{g}}} {\left\{ {\mathrm{{SIN}}{\mathrm{{R}}_{{s_1}}}} \right\} _{appr}}\) for example and the rest can be done in the same manner. Now, we expand \(\mathop E\limits _{\Delta _{\mathbf{h}},\Delta _{\mathbf{g}}} {\left\{ {\mathrm{{SIN}}{\mathrm{{R}}_{{s_1}}}} \right\} _{appr}}\) as

$$\begin{aligned} \mathop E\limits _{{\Delta _{\mathbf{h}}},{\Delta _{\mathbf{g}}}} {\left\{ {\mathrm{{SIN}}{\mathrm{{R}}_{{s_1}}}} \right\} _{appr}}&= \frac{{\mathop E\limits _{{\Delta _{\mathbf{h}}},{\Delta _{\mathbf{g}}}} \left( {{P_2}{{\left| {{{\mathbf{h}}^T}({\mathbf{w}} \odot {\mathbf{g}})} \right| }^2}} \right) }}{{\mathop E\limits _{{\Delta _{\mathbf{h}}},{\Delta _{\mathbf{g}}}} \left( {\sigma _1^2 + {{\left\| {{\mathbf{w}} \odot {\mathbf{h}} \odot \mathbf {u}} \right\| }^2}} \right) }}\end{aligned}$$
(25)
$$\begin{aligned}&= \frac{{\mathop {\mathrm{{ }}E}\limits _{{\Delta _{\mathbf{h}}},{\Delta _{\mathbf{g}}}} \left\{ {{P_2}{{\left| {\sum \limits _{i = 1}^N {{{\widehat{h}}_i}{w_i}{{\widehat{g}}_i}} + \sum \limits _{i = 1}^N {{\delta _{{h_i}}}{w_i}{{\widehat{g}}_i}} + \sum \limits _{i = 1}^N {{{\widehat{h}}_i}{w_i}{\delta _{{g_i}}}} + \sum \limits _{i = 1}^N {{\delta _{{h_i}}}{w_i}{\delta _{{g_i}}}} } \right| }^2}} \right\} }}{{\mathop {\mathrm{{ }}E}\limits _{{\Delta _{\mathbf{h}}},{\Delta _{\mathbf{g}}}} \left\{ {\sum \limits _{i = 1}^N {\left( {{{\left| {{{\widehat{h}}_i}} \right| }^2} + {{\left| {{\delta _{{h_i}}}} \right| }^2} + \widehat{h}_i^*{\delta _{{h_i}}} + {{\widehat{h}}_i}\delta _{{h_i}}^*} \right) {{\left| {{w_i}} \right| }^2}\sigma _{{r_i}}^2} } \right\} + \sigma _1^2}}\end{aligned}$$
(26)
$$\begin{aligned}&\mathop = \limits ^{(a)} {P_2}\frac{{\mathop {\mathrm{{ }}E}\limits _{{\Delta _{\mathbf{h}}},{\Delta _{\mathbf{g}}}} \left\{ {{{\left| {\sum \limits _{i = 1}^N {{{\widehat{h}}_i}{w_i}{{\widehat{g}}_i}} } \right| }^2}} \right\} \mathrm{{ + }}\mathop {\mathrm{{ }}E}\limits _{{\Delta _{\mathbf{h}}},{\Delta _{\mathbf{g}}}} \left\{ {{{\left| {\sum \limits _{i = 1}^N {{\delta _{{h_i}}}{w_i}{{\widehat{g}}_i}} } \right| }^2}} \right\} \mathrm{{ + }}\mathop {\mathrm{{ }}E}\limits _{{\Delta _{\mathbf{h}}},{\Delta _{\mathbf{g}}}} \left\{ {{{\left| {\sum \limits _{i = 1}^N {{{\widehat{h}}_i}{w_i}{\delta _{{g_i}}}} } \right| }^2}} \right\} \mathrm{{ + }}\mathop {\mathrm{{ }}E}\limits _{{\Delta _{\mathbf{h}}},{\Delta _{\mathbf{g}}}} \left\{ {{{\left| {\sum \limits _{i = 1}^N {{\delta _{{h_i}}}{w_i}{\delta _{{g_i}}}} } \right| }^2}} \right\} }}{{\sigma _1^2 + \sum \limits _{i = 1}^N {\left( {{{\left| {{{\widehat{h}}_i}} \right| }^2} + \mathop {\mathrm{{ }}E}\limits _{{\Delta _{\mathbf{h}}},{\Delta _{\mathbf{g}}}} \left\{ {{{\left| {{\delta _{{h_i}}}} \right| }^2}} \right\} } \right) {{\left| {{w_i}} \right| }^2}\sigma _{{r_i}}^2} }}\end{aligned}$$
(27)
$$\begin{aligned}&\mathop = \limits ^{(b)} {P_2}\frac{{{{\left| {\sum \limits _{i = 1}^N {{{\widehat{h}}_i}{w_i}{{\widehat{g}}_i}} } \right| }^2}\mathrm{{ + }}\sum \limits _{i = 1}^N {{{\left| {{w_i}} \right| }^2}{{\left| {{{\widehat{g}}_i}} \right| }^2}\sigma _{{h_i}}^2} \mathrm{{ + }}\sum \limits _{i = 1}^N {{{\left| {{w_i}} \right| }^2}{{\left| {{{\widehat{h}}_i}} \right| }^2}\sigma _{{g_i}}^2} \mathrm{{ + }}\sum \limits _{i = 1}^N {{{\left| {{w_i}} \right| }^2}\sigma _{{h_i}}^2\sigma _{{g_i}}^2} }}{{\sigma _1^2 + \sum \limits _{i = 1}^N {\left( {{{\left| {{{\widehat{h}}_i}} \right| }^2} + \sigma _{{h_i}}^2} \right) {{\left| {{w_i}} \right| }^2}\sigma _{{r_i}}^2} }} \end{aligned}$$
(28)

where in steps \((a)\) and \((b)\) the predefined properties that the elements of \(\Delta _{\mathbf{h}}\) and \(\Delta _{\mathbf{g}}\) are i.i.d. zero-mean complex Gaussian and they are independent to each other should be used.

Similarly, we can get \(\mathop E\limits _{\Delta _{\mathbf{h}},\Delta _{\mathbf{g}}} {\left\{ {\mathrm{{SIN}}{\mathrm{{R}}_{{s_2}}}} \right\} _{appr}}\) as follows.

$$\begin{aligned} \mathop E\limits _{{\Delta _{\mathbf{h}}},{\Delta _{\mathbf{g}}}} {\left\{ {\mathrm{{SIN}}{\mathrm{{R}}_{{s_2}}}} \right\} _{appr}} = {P_1}\frac{{{{\left| {\sum \limits _{i = 1}^N {{{\widehat{h}}_i}{w_i}{{\widehat{g}}_i}} } \right| }^2}\mathrm{{ + }}\sum \limits _{i = 1}^N {{{\left| {{w_i}} \right| }^2}{{\left| {{{\widehat{h}}_i}} \right| }^2}\sigma _{{g_i}}^2} \mathrm{{ + }}\sum \limits _{i = 1}^N {{{\left| {{w_i}} \right| }^2}{{\left| {{{\widehat{g}}_i}} \right| }^2}\sigma _{{h_i}}^2} + \sum \limits _{i = 1}^N {{{\left| {{w_i}} \right| }^2}\sigma _{{h_i}}^2\sigma _{{g_i}}^2} }}{{\sigma _2^2 + \sum \limits _{i = 1}^N {\left( {{{\left| {{{\widehat{g}}_i}} \right| }^2} + \sigma _{{g_i}}^2} \right) {{\left| {{w_i}} \right| }^2}\sigma _{{r_i}}^2} }} \end{aligned}$$
(29)

End of derivation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Ji, B., Huang, Y. et al. Robust collaborative relay beamforming design for two-way relay systems with reciprocal CSI. Wireless Netw 21, 2209–2221 (2015). https://doi.org/10.1007/s11276-015-0905-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-0905-4

Keywords

Navigation