Skip to main content

Advertisement

Log in

Variable-rate transmission method with coordinator election for wireless body area networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Wearable computing technologies are becoming widely used in healthcare and for tracking various human work and leisure activities. The collection and transmission of sensor data are fundamental functions of these technologies. A wireless body area network (WBAN) helps these wearable devices to continuously acquire ambulatory and physiological signals in real time with multiple sensor nodes attached or implanted into a human body. Sensor nodes transmit data to a sink node with wireless connections can enable mobility of human bodies. Since the data transmission rate of each sensor node is different, we proposed a variable-rate transmission MAC protocol (VTMAC) with coordinator election based on the time division multiple access method. This adaptive coordinator election scheme can balance the sensor nodes’ power consumption to extend the lifetime of WBAN as possible. It can also flexibly allocate time slots for each sensor node according to their different data transmission rates to enhance the efficiency of networks. The proposed method has been implemented and demonstrated on a hardware wireless communication platform with multiple wearable sensor nodes. Simulations show the VTMAC can achieve less power consumption and higher throughput performance compared with conventional protocols especially in high data transmission rate situation for the body area networks we simulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Latré, B., Braem, B., Moerman, I., Blondia, C., & Demeester, P. (2010). A survey on wireless body area networks. Wireless Networks, 17, 1–18.

    Article  Google Scholar 

  2. Li, Z., & Zhang, G. (2007) A physical activities healthcare system based on wireless sensing technology. In: 13th IEEE international conference on embedded and real-time computing systems and applications (RTCSA 2007) pp 369–376.

  3. Zeng, Y., Li, D., & Vasilakos, A. V. (2013). Real-time data report and task execution in wireless sensor and actuator networks using self-aware mobile actuators. Computer Communications, 36(9), 988–997.

    Article  Google Scholar 

  4. Zhang, Z., Wang, H., Vasilakos, A. V., & Fang, H. (2012). ECG-cryptography and authentication in body area networks. IEEE Transactions on Information Technology in Biomedicine, 16, 1070–1078.

    Article  Google Scholar 

  5. He, D., Chen, C., Chan, S., Bu, J., & Vasilakos, A. V. (2012). A distributed trust evaluation model and its application scenarios for medical sensor networks. IEEE Transactions on Information Technology in Biomedicine, 16, 1164–1175.

    Article  Google Scholar 

  6. Xiong, N., Vasilakos, A. V., Yang, L. T., Song, L., Pan, Y., Kannan, R., & Li, Y. (2009). Comparative analysis of quality of service and memory usage for adaptive failure detectors in healthcare systems. IEEE Journal on Selected Areas in Communications, 27(4), 495–509.

    Article  Google Scholar 

  7. Acampora, G., Cook, D. J., Rashidi, P., & Vasilakos, A. V. (2013) A survey on ambient intelligence in healthcare. In: Proceedings of the IEEE. 12, 2470–2494.

  8. Zhou, J., Cao, Z., Dong, X., Lin, X., & Vasilakos, A. V. (2013). Securing m-healthcare social networks: Challenges, countermeasures and future directions. IEEE Wireless Communications, 20(4), 12–21.

    Article  Google Scholar 

  9. Khan, J. Y., & Yuce, M. R. (2010) Wireless body area network (WBAN) for medical applications. In: New developments in biomedical engineering (pp 591–628).

  10. He, D., Chen, C., Chan, S., Bu, J., & Vasilakos, A. V. (2012). ReTrust: attack-resistant and lightweight trust management for medical sensor networks. IEEE Transactions on Information Technology in Biomedicine, 16(4), 623–632.

    Article  Google Scholar 

  11. Cheng, H., Xiong, N., Vasilakos, A. V., Tianruo Yang, L., Chen, G., & Zhuang, X. (2012). Nodes organization for channel assignment with topology preservation. In multi-radio wireless mesh networks. Ad Hoc Networks, 10, 760–773.

    Article  Google Scholar 

  12. Li, M., Li, Z., & Vasilakos, A. V. (2013). A survey on topology control in wireless sensor networks: taxonomy, comparative study, and open issues. Proceedings of the IEEE, 101(12), 2538–2557.

    Article  Google Scholar 

  13. Sheng, Z., Yang, S., Yu, Y., & Vasilakos, A. V. (2013). A survey on the ietf protocol suite for the internet of things: Standards, challenges, and opportunities. IEEE Wireless Communications, 20(6), 91–98.

    Article  Google Scholar 

  14. Javaid, N., Hayat, S., Shakir, M., & Khan, M. A. (2013). Energy efficient MAC protocols in wireless body area sensor networks—A survey. Journal of Basic Applied Scientific Research, 1–17.

  15. Xiao, Y., Peng, M., Gibson, J., Xie, G. G., Du, D.-Z., & Vasilakos, A. V. (2011). Tight performance bounds of multihop fair access for MAC protocols in wireless sensor networks and underwater sensor networks. IEEE Transactions on Mobile Computing, 11(10), 1538–1554.

    Article  Google Scholar 

  16. Yao, Y., Cao, Q., & Vasilakos, A. V. (2013) EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for wireless sensor networks. In: 2013 IEEE 10th international conference on mobile ad-hoc and sensor systems (pp 182–190).

  17. Yao, Y., Cao, Q., & Vasilakos, A. V. (2014). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for heterogeneous wireless sensor networks. IEEE/ACM Transactions on Networking,. doi:10.1109/TNET.2014.2306592.

    Google Scholar 

  18. Chen, M., Gonzalez, S., Vasilakos, A. V., Cao, H., & Leung, V. C. M. (2010). Body area networks: A survey. Mobile Networks and Applications, 16, 171–193.

    Article  Google Scholar 

  19. Han, K., Luo, J., Liu, Y., & Vasilakos, A. V. (2013). Algorithm design for data communications in duty-cycled wireless sensor networks: A survey. IEEE Communications Magazine, 51(7), 107–113.

    Article  Google Scholar 

  20. Kautz, J., Mullins, B., Baldwin, R., & Graham, S. (2007) An adaptable energy-efficient medium access control protocol for wireless sensor networks. In: 2007 40th annual hawaii international conference on system sciences (HICSS’07) (p 292a).

  21. Nam, Y., Lee, H., Jung, H., Kwon, T., & Choi, Y. (2006) An adaptive MAC (A-MAC) protocol guaranteeing network lifetime for wireless sensor networks. In: 12th European wireless conference 2006Enabling technologies for wireless multimedia communications (European wireless) (pp 1–7).

  22. Bo, C., Li, X.-Y., Tao, Y., Teymour, F., Anderson, P., & Ren, S. (2013) SA-MAC: Self-stabilizing adaptive MAC protocol for wireless sensor networks. In: 2013 IEEE 33rd International conference on distributed computing systems workshops, Philadelphia (pp 339–344).

  23. Kwak, K. S., & Ullah, S. (2010) A traffic-adaptive MAC protocol for WBAN. In: 2010 IEEE Globecom Workshops (pp 1286–1289).

  24. Shuai, J., Zou, W., & Zhou, Z. (2013) Priority-based adaptive timeslot allocation scheme for wireless body area network. In: 13th international symposium on communications and information technologies (ISCIT) (pp 609–614).

  25. Rahim, A., Javaid, N., Aslam M., Qasim U., & Khan, Z. A. (2012) Adaptive-reliable medium access control protocol for wireless body area networks. In: 9th annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks (SECON) (pp 56–58).

  26. Antonopoulos, C., Prayati, A., Kerasiotis, F., & Papadopoulos, G. (2009) CSMA-MAC performance evaluation for WSN applications. In: 3rd international conference on sensor technologies and applications (pp 13–18).

  27. Van Dam, T., & Langendoen, K. (2003) An adaptive energy-efficient MAC protocol for wireless sensor networks. In: First international conference on embedded networked sensor systemsSenSys’03 (pp 171–180).

  28. Ullah, S., Shen, B., Riazul Islam, S. M., Khan, P., Saleem, S., & Sup Kwak, K. (2009). A study of MAC protocols for WBANs. Sensors, 10, 128–145.

    Article  Google Scholar 

  29. Ye, W., Heidemann, J., & Estrin, D. (2004). Medium access control with coordinated adaptive sleeping for wireless sensor networks. IEEE/ACM Transactions on Networking, 12, 493–506.

    Article  Google Scholar 

  30. Ullah, S., Kwak, D., Lee, C., Lee, H., & Kwak, K. S. (2009) Numerical analysis of CSMA/CA for pattern-based WBAN system. In: 2009 2nd international conference on biomedical engineering and informatics (pp 1–3).

  31. Li, H., & Tan, J. (2010). Heartbeat-driven medium-access control for body sensor networks. IEEE Transactions on Information Technology in Biomedicine, 14, 44–51.

    Article  MathSciNet  Google Scholar 

  32. Timmons, N. F., & Scanlon, W. G. (2009) An adaptive energy efficient MAC protocol for the medical body area network. In: 2009 1st international conference on wireless communication, vehicular technology, information theory and aerospace and electronic systems technology (pp 587–593).

  33. Li, C., Li, H.-B., & Kohno, R. (2009). Reservation-based dynamic TDMA protocol for medical body area networks. IEICE Transactions on Communications, E92-B, 387–395.

    Article  Google Scholar 

  34. Su, H., & Zhang, X. (2009). Battery-dynamics driven TDMA MAC protocols for wireless body-area monitoring networks in healthcare applications. IEEE Journal on Selected Areas in Communications, 27, 424–434.

    Article  Google Scholar 

  35. Song, W. Z., Huang, R., Shirazi, B., & LaHusen, R. (2009). TreeMAC: Localized TDMA MAC protocol for real-time high-data-rate sensor networks. Pervasive and Mobile Computing, 5, 750–765.

    Article  Google Scholar 

  36. Castalia Home Page. http://castalia.research.nicta.com.au/index.php/en/.

  37. OMNeT++ Community Site. http://www.omnetpp.org/.

  38. TinyOS Home Page. http://www.tinyos.net/.

Download references

Acknowledgments

This research was supported by the Science Technology and Innovation Committee of Shenzhen Municipality under Project JCYJ20120618140504947.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanglie Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Chen, M. & Zhang, G. Variable-rate transmission method with coordinator election for wireless body area networks. Wireless Netw 21, 2169–2180 (2015). https://doi.org/10.1007/s11276-015-0917-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-0917-0

Keywords

Navigation