Skip to main content

Advertisement

Log in

Efficient power control for half-duplex relay based D2D networks under sum power constraints

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Device-to-device (D2D) communications provide an effective way to improve local services in cellular networks which allow close-by users to communicate directly. Considering cooperative relay (CR) can achieve high spectrum and energy efficiency, this paper proposes a novel CR-based D2D communication scheme, referred to as CR-D2D, which allows a D2D link to underlay a cellular downlink by assigning a D2D transmitter as a half-duplex relay to assist cellular downlink communication. To maximize the achievable rates of D2D users and meanwhile to meet the minimum rate requirements of cellular users, transmission powers allocated to the base station (BS) and to the D2D transmitter are both optimized under the sum power constraint, while existing works usually perform the optimization at the BS and at the D2D transmitter independently. The simulation results show that the proposed CR-D2D scheme outperforms traditional cellular communication scheme in system throughput and in spectrum utilization efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. The hop gain refers to using a single-hop link in D2D communication scheme rather than using an uplink and a downlink resource of a BS as in traditional cellular communication scheme.

  2. For example, if UE2 with a VBR traffic were provided higher data rate, the user could watch a high-definition video program instead of a standard-definition one.

References

  1. Andreev, S., Pyattaev, A., Johnsson, K., et al. (2014). Cellular traffic offloading onto network-assisted device-to-device connections. IEEE Communications Magazine, 52(4), 20–31.

    Article  Google Scholar 

  2. Astely, D., Dahlman, E., Fodor, G., et al. (2013). LTE release 12 and beyond. IEEE Communications Magazine, 51(7), 154–160.

    Article  Google Scholar 

  3. Bletsas, A., Shin, H., & Win, M. Z. (2007). Outage optimality of opportunistic amplify-and-forward relaying. IEEE Communications Letters, 11(3), 261–263.

    Article  Google Scholar 

  4. Feng, D., Lu, L., Wu, Y., Li, G., Shaoqian, L., & Gang, F., et al. (2014). Device-to-device communications in cellular networks. IEEE Communications Magazine, 52(4), 49–55.

    Article  Google Scholar 

  5. Giupponi, L., & Ibars, C. (2009). Distributed cooperation among cognitive radios with complete and incomplete information. EURASIP Journal on Advanced Signal Processing, 2009, 1–13.

  6. Golrezaei, N., Molisch, A. F., Dimakis, A. G., et al. (2013). Femtocaching and device-to-device collaboration: A new architecture for wireless video distribution. IEEE Communications Magazine, 51(4), 142–149.

    Article  Google Scholar 

  7. Hajiaghayi, M., Wijting, C., Ribeiro, C., et al. (2014). Efficient and practical resource block allocation for LTE-based D2D network via graph coloring. Wireless Networks, 20(4), 611–624.

    Article  Google Scholar 

  8. Hasan, M., Hossain, E., & Kim, D. (2014). Resource allocation under channel uncertainties for relay-aided device-to-device communication underlaying LTE-A cellular networks. IEEE Transactions on Wireless Communications, 13(4), 2322–2338.

    Article  Google Scholar 

  9. Kaufman, B., Lilleberg, J., & Aazhang, B. (2013). Spectrum sharing scheme between cellular users and ad-hoc device-to-device users. IEEE Transactions on Wireless Communications, 12(3), 1038–1049.

    Article  Google Scholar 

  10. Liu, Y., Xia, X., & Zhang, H. (2012). Distributed space-time coding for full-duplex asynchronous cooperative communications. IEEE Transactions on Wireless Communications, 11(7), 2680–2688.

    Article  Google Scholar 

  11. Luc, V., Jerome, L., Onur, O., et al. (2009). Rate-optimized power allocation for DF-relayed OFDM transmission under sum and individual power constraints. EURASIP Journal on Wireless Communications and Networking, 2009, 1–11.

  12. Min, H., Lee, J., Park, S., & Hong, D. (2011). Capacity enhancement using an interference limited area for device-to-device uplink underlaying cellular networks. IEEE Transactions on Wireless Communications, 10(12), 3995–4000.

    Article  Google Scholar 

  13. Pei, Y., & Liang, Y. C. (2013). Resource allocation for device-to-device communications overlaying two-way cellular networks. IEEE Transactions on Wireless Communications, 12(7), 3611–3621.

    Article  Google Scholar 

  14. Peng, M., Li, Y., Quek, T. Q. S., et al. (2014). Device-to-device underlaid cellular networks under Rician fading channels. IEEE Transactions on Wireless Communications, 13(8), 4247–4259.

    Article  Google Scholar 

  15. Reider, N., & Fodor, G. (2012). A distributed power control and mode selection algorithm for D2D communications. EURASIP Journal on Wireless Communications and Networking, 2012, 1–25.

  16. Riihonen, T., Werner, S., & Wichman, R. (2011). Hybrid full-duplex/half-duplex relaying with transmit power adaptation. IEEE Transactions on Wireless Communications, 10(9), 3074–3085.

    Article  Google Scholar 

  17. Zhang, X., Chen, S., & Wang, W. (2009). Multiuser radio resource allocation for multiservice transmission in OFDMA-based cooperative relay networks. EURASIP Journal on Wireless Communications and Networking, 2009, 1–13.

  18. Zhang, H., Jiang, C., Beaulieu, N., Chu, X., Wen, X., & Tao, M. (2014). Resource allocation in spectrum-sharing OFDMA femtocells with heterogeneous services. IEEE Transactions on Communications, 62(7), 2366–2377.

    Article  Google Scholar 

  19. Zhou, B., Hu, H., Huang, S.-Q., & Chen, H.-H. (2013). Intracluster device-to-device relay algorithm with optimal resource utilization. IEEE Transactions on Vehicular Technology, 62(5), 2315–2326.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the China Fundamental Research Funds for the Central Universities under Grant 2014QNA82, by the National Nature Science Funds of China under Grant 61471361, by the Open Project Funds of the State Key Laboratory of Integrated Service Network of Xidian University under Grant ISN16-09, by the Natural Science Funds of Jiangsu Province of China under Grant BK20140216, by the ZTE Research Project under Grant CON1412150018, by the UK EPSRC Project DANCER under Grant EP/K002643/1, and by the EU FP7 Projects EVANS under Grant GA-2010-269323 and CROWN under Grant GA-2013-610524.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Yang.

Appendices

Appendix 1

Proof of Lemma 1

The substitution of \(\gamma_{{\mathcal{R},2}}^{\text{D}}\) [defined in Eq. (12)] into \(\mathcal{C}_{2}^{\text{D}}\) [defined in Eq. (14)] yields

$$\mathcal{C}_{2}^{\text{D}} = \frac{1}{4}W\log_{2} \left( {1 + \frac{{\left( {1 - \theta } \right)p_{\mathcal{R}}^{\text{D}} \eta_{{\mathcal{R},2}} }}{{\theta p_{\mathcal{R}}^{\text{D}} \eta_{{\mathcal{R},2}} + 1}}} \right)$$
(22)

Taking the first-order partial derivative of \(\mathcal{C}_{2}^{\text{D}} \left( {p_{\mathcal{R}}^{\text{D}} ,\theta } \right)\) with respect to θ, we can get

$$\frac{{\partial \mathcal{C}_{2}^{\text{D}} \left( {p_{\mathcal{R}}^{\text{D}} ,\theta } \right)}}{\partial \theta } = - \frac{W}{4\ln 2}\frac{\theta }{{\theta p_{\mathcal{R}}^{\text{D}} \gamma_{{\mathcal{R},2}} + 1}} \le 0$$
(23)

That means \(\mathcal{C}_{2}^{\text{D}}\) monotonically decreases as θ increases. Thus, Lemma 1 follows.

Appendix 2

Proof of Proposition 1

As \(\gamma_{{\mathcal{R},1}}^{\text{D}} \ge \gamma_{{\mathcal{B},\mathcal{R}}}^{\text{D}}\), we have

$$\begin{aligned} \gamma_{{\mathcal{B},\mathcal{R},1}}^{\text{D}} & =\, \hbox{min} \left\{ {\gamma_{{\mathcal{B},\mathcal{R}}}^{\text{D}} ,\gamma_{{\mathcal{R},1}}^{\text{D}} } \right\} = \gamma_{{\mathcal{B},\mathcal{R}}}^{\text{D}} \\ & \Rightarrow \left( {\bar{P} - p_{\mathcal{R}}^{\text{D}} } \right)\gamma_{{\mathcal{B},\mathcal{R}}} = G \\ \end{aligned}$$
(24)

To satisfy the CBR requirement of UE1, we first solve equations \(p_{\mathcal{B}}^{\text{D}} + p_{\mathcal{R}}^{\text{D}} { = }\bar{P}\) in (15-2) and (24). and we can get

$$\hat{p}_{\mathcal{B}}^{\text{D}} = \frac{G}{{\eta_{{\mathcal{B},\mathcal{R}}} }}\quad {\text{and}}\quad \hat{p}_{\mathcal{R}}^{\text{D}} = \hbox{max} \left( {0,\bar{P} - \frac{G}{{\eta_{{\mathcal{B},\mathcal{R}}} }}} \right)$$
(25)

Next, we further substitute Eqs. (25) and (12) into \(\gamma_{{\mathcal{R},1}}^{\text{D}} \ge \gamma_{{\mathcal{B},\mathcal{R}}}^{\text{D}}\). We get

$$\theta \ge \frac{{\eta_{{\mathcal{B},\mathcal{R}}} }}{{\eta_{{\mathcal{R},1}} }}\frac{{ - \left( {\hat{p}_{\mathcal{R}}^{\text{D}} } \right)^{2} \eta_{{\mathcal{R},1}} + \hat{p}_{\mathcal{R}}^{\text{D}} \left( {\bar{P}\eta_{{\mathcal{R},1}} - 1} \right) + \bar{P}}}{{ - \left( {\hat{p}_{\mathcal{R}}^{\text{D}} } \right)^{2} \eta_{{\mathcal{B},\mathcal{R}}} + \hat{p}_{\mathcal{R}}^{\text{D}} \left( {\bar{P}\eta_{{\mathcal{B},\mathcal{R}}} + 1} \right)}}$$
(26)

From Lemma 1, we know that \(\mathcal{C}_{2}^{\text{D}}\) monotonically decreases as θ increases. Since 0 ≤ θ < 1, we can give the optimal θ to maximize the achievable rate for the D2D link as

$$\hat{\theta } = \hbox{max} \left( {0,\,\hbox{min} \left( {1,\frac{{\eta_{{\mathcal{B},\mathcal{R}}} }}{{\eta_{{\mathcal{R},1}} }}\frac{{ - \left( {\hat{p}_{\mathcal{R}}^{\text{D}} } \right)^{2} \eta_{{\mathcal{R},1}} + \hat{p}_{\mathcal{R}}^{\text{D}} \left( {\bar{P}\eta_{{\mathcal{R},1}} - 1} \right) + \bar{P}}}{{ - \left( {\hat{p}_{\mathcal{R}}^{\text{D}} } \right)^{2} \eta_{{\mathcal{B},\mathcal{R}}} + \hat{p}_{\mathcal{R}}^{\text{D}} \left( {\bar{P}\eta_{{\mathcal{B},\mathcal{R}}} + 1} \right)}}} \right)} \right)$$
(27)

Appendix 3

Proof of proposition 2

When \(\gamma_{{\mathcal{B},\mathcal{R}}}^{\text{D}} \ge \gamma_{{\mathcal{R},1}}^{\text{D}}\), we have

$$\begin{aligned} \gamma_{{\mathcal{B},\mathcal{R},1}}^{\text{D}} & =\, \hbox{min} \left\{ {\gamma_{{\mathcal{B},\mathcal{R}}}^{\text{D}} ,\gamma_{{\mathcal{R},1}}^{\text{D}} } \right\} = \gamma_{{\mathcal{R},1}}^{\text{D}} \\ & \Rightarrow \frac{{\theta p_{\mathcal{R}}^{\text{D}} \gamma_{{\mathcal{R},1}} }}{{\left( {1 - \theta } \right)p_{\mathcal{R}}^{\text{D}} \gamma_{{\mathcal{R},1}} + 1}} = G \\ \end{aligned}$$
(28)

To satisfy the CBR requirement of UE1, we first solve equations \(p_{\mathcal{B}}^{\text{D}} + p_{\mathcal{R}}^{\text{D}} { = }\bar{P}\) [defined in Eq. (15-2)] and (28). Then we can get

$$\hat{p}_{\mathcal{B}}^{\text{D}} = \hbox{max} \left( {0,\bar{P} - \frac{1}{{\eta_{{\mathcal{R},1}} }}\frac{G}{{\hat{\theta }\left( {G + 1} \right) - G}}} \right)\quad {\text{and}}\quad \hat{p}_{\mathcal{R}}^{\text{D}} = \hbox{max} \left( {0,\,\frac{1}{{\eta_{{\mathcal{R},1}} }}\frac{G}{{\hat{\theta }\left( {G + 1} \right) - G}}} \right)$$
(29)

where the optimal \(\hat{\theta }\) remains unknown.Next, to find the optimal \(\hat{\theta }\), we substitute the expressions for \(\gamma_{{\mathcal{B},\mathcal{R}}}^{\text{D}}\) [defined in Eq. (9)] and \(\gamma_{{\mathcal{R},1}}^{\text{D}}\) [defined in Eq. (12)] into \(\gamma_{{\mathcal{B},\mathcal{R}}}^{\text{D}} \ge \gamma_{{\mathcal{R},1}}^{\text{D}}\). We can get

$$\left( {\bar{P} - p_{\mathcal{R}}^{\text{D}} } \right)\eta_{{\mathcal{B},\mathcal{R}}} \ge \frac{{\theta p_{\mathcal{R}}^{\text{D}} \eta_{{\mathcal{R},1}} }}{{\left( {1 - \theta } \right)p_{\mathcal{R}}^{\text{D}} \eta_{{\mathcal{R},1}} + 1}}$$
(30)

By further substituting \(\hat{p}_{\mathcal{R}}^{\text{D}}\) given in Eq. (29) into inequality (30), we can convert inequality (30) into the following quadratic inequality with only one unknown variable θ.

$$f\left( \theta \right) = A\theta^{2} + B\theta + C \ge 0$$
(31)

where the value of the constants A, B and C are given in Eq. (20).To solve the above quadratic inequality, we first note that

$$\bar{P}\eta_{{\mathcal{B},\mathcal{R}}} > \left( {\bar{P} - p_{\mathcal{R}}^{\text{D}} } \right)\eta_{{\mathcal{B},\mathcal{R}}} = G\quad {\text{and}}\quad \eta_{{\mathcal{R},1}} > \eta_{{\mathcal{B},1}}$$
(32)

The reasonability of \(\eta_{{\mathcal{R},1}} > \eta_{{\mathcal{B},1}}\) in (32) is explained as follows. The D2D communication can be invoked only if D2D transmitter \({\text{HN}}_{\mathcal{R}}\) can help satisfy the CBR requirement of the cellular UE, i.e., UE1. It is essential that CNR \(\eta_{{\mathcal{R},1}} > \eta_{{\mathcal{B},1}}\). Otherwise, UE1 would rather operate in the TC scheme.Adhering to inequalities (32), we can derive that

$$A = \left( {G + 1} \right)\left( {\eta_{{\mathcal{R},1}} } \right)^{2} \left( {\bar{P}\eta_{{\mathcal{B},\mathcal{R}}} - G} \right) > 0$$
(33)

and

$$B^{2} - 4AC = \left( { - \bar{P}G\left( {\eta_{{\mathcal{R},1}} } \right)^{2} \eta_{{\mathcal{B},\mathcal{R}}} + \left( {G\eta_{{\mathcal{R},1}} } \right)^{2} - G\eta_{{\mathcal{R},1}} \eta_{{\mathcal{B},\mathcal{R}}} } \right)^{2} + 8\bar{P}G^{2} \left( {G + 1} \right)\left( {\bar{P}\eta_{{\mathcal{B},\mathcal{R}}} - G} \right)\left( {\eta_{{\mathcal{R},1}} } \right)^{4} \eta_{{\mathcal{B},\mathcal{R}}} > 0$$
(34)

Then, the solution to the quadratic inequality (31) is clearly:

$$\theta \le \theta_{1} = \frac{{ - B - \sqrt {B^{2} - 4AC} }}{2A}\quad {\text{or}}\quad \theta \ge \theta_{2} = \frac{{ - B + \sqrt {B^{2} - 4AC} }}{2A}$$
(35)

We also note that

$$\theta_{1} \theta_{2} = \frac{C}{A} = - \frac{{2\bar{P}G^{2} \eta_{{\mathcal{B},\mathcal{R}}} }}{{\left( {G + 1} \right)\left( {\bar{P}\eta_{{\mathcal{B},\mathcal{R}}} - G} \right)}} < 0$$
(36)

So we can determine that θ 1 < 0 < θ 2. From Lemma 1, we know that \(\mathcal{C}_{2}^{\text{D}}\) monotonically decreases as θ increases. Since 0 ≤ θ < 1, the optimal θ is obtained as

$$\hat{\theta } = \hbox{max} \left( {0,\hbox{min} \left( {1,\frac{{ - B + \sqrt {B^{2} - 4AC} }}{2A}} \right)} \right)$$
(37)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Yang, K., Wu, S. et al. Efficient power control for half-duplex relay based D2D networks under sum power constraints. Wireless Netw 21, 2345–2355 (2015). https://doi.org/10.1007/s11276-015-0920-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-0920-5

Keywords

Navigation