Skip to main content
Log in

Minimum average relative load for online routing

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

We are given a network where each edge has an associated capacity or bandwidth. Requests for connections arrive online; each request specifies the source and sink and the requested bandwidth. This paper presents an algorithm for routing of messages. At the time of arrival of each request, if its bandwidth is bigger than associated bound, then the request is rejected. Otherwise, the algorithm assigns it a path to send the message. We define a new routing objective, which is called the average relative load on edges. Our objective is different from the previously studied objective (Aspnes et al. in J ACM 44:486–504, 1997; Buchbinder and Naor 2006), minimizing the maximum relative load. The algorithm assigns the paths such that the competitive ratio of the algorithm is \(-\frac{1}{2\beta }/(\alpha +\frac{1}{2\beta })=O(1)\), where \(\beta <0\) and \(-1/2\beta <\alpha <-1/\beta\). Also, an upper bound \(O(\log _a n)\) for the relative load of each edge is presented, where \(1/2\le a< 1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aspnes, J., Azar, Y., Fiat, A., Plotkin, S., & Waarts, O. (1997). On-line routing of virtual circuits with applications to load balancing and machine scheduling. Journal of the ACM, 44, 486–504.

    Article  MathSciNet  MATH  Google Scholar 

  2. Awerbuch, B., Azar, Y., & Plotkin, S. (1993). Throughput-competitive on-line routing. In FOCS 93: Proceedings of the 1993 IEEE 34th annual foundations of computer science (pp. 32–40). Washington, DC, USA: IEEE Computer Society.

  3. Awerbuch, B., Azar, Y., Plotkin, S., & Waarts, O. (2001). Competitive routing of virtual circuits with unknown duration. Journal of Computer and System Sciences, 62, 385–397.

    Article  MathSciNet  MATH  Google Scholar 

  4. Bansal, N., Lee, K. W., Nagarajan, V., & Zafer, M. (2011). Minimum congestion mapping in a cloud. In PODC (pp. 267–276).

  5. Buchbinder, N., & Naor, J. (2006). Improved bounds for online routing and packing via a primal-dual approach. In Annual IEEE symposium on foundations of computer science (pp. 293–304).

  6. Buchbinder, N., & Naor, J. (2009). The design of competitive online algorithms via a primal-dual approach. Foundations and Trends in Theoretical Computer Science, 3, 99–263.

    Article  MathSciNet  Google Scholar 

  7. Busch, C., Kannan, R., & Vasilakos, A. V. (2012). Approximating ongestion + ilation in networks via quality of routing games. IEEE Transactions on Computers, 61, 1270–1283.

    Article  MathSciNet  Google Scholar 

  8. Cheng, H., Xiongb, N., Vasilakosc, A. V., Yangd, L. T., Chena, G., & Zhuanga, X. (2012). Nodes organization for channel assignment withtopology preservation in multi-radio wireless mesh networks. Ad Hoc networks, 10(5), 760–773.

    Article  Google Scholar 

  9. Chilamkurti, N., Zeadally, S., Vasilakos, A., & Sharma, V. (2009). Cross-layer support for energy efficient routing in wireless sensor networks. Journal of Sensors. doi:10.1155/2009/134165.

    Google Scholar 

  10. Cianfrani, A., Eramo, V., Listanti, M., & Polverini, M. (2012). An OSPF-integrated routing strategy for qos-aware energy saving in IP backbone networks. IEEE Transactions on Network and Service Management, 9(3), 254–267.

    Article  Google Scholar 

  11. Even, G., & Medina, M. (2013). Online multi-commodity flow with high demands. Approximation and Online Algorithms, 7846, 16–29.

    Article  MathSciNet  Google Scholar 

  12. Even, G., Medina, M., Schaffrath, G., & Schmid, S. (2012). Competitive and deterministic embeddings of virtual networks. In ICDCN (pp. 106–121).

  13. Li, M., Li, Z., & Vasilakos, A. V. (2013). A survey on topology control in wireless sensor networks: Taxonomy, comparative study, and open issues. Proceedings of the IEEE, 101(12), 2538–2557.

    Article  Google Scholar 

  14. Li, P., Guo, S., Yu, S., & Vasilakos, A. V. (2012). An opportunistic feeding and routing protocol for reliable multicast with pipelined network coding. In INFOCOM (pp. 100–108).

  15. Quan, W., Xu, C., Vasilakos, A. V., Guan, J., Zhang, H., & Grieco, L. A. (2014). Tree-bitmap and bloom-filter for a scalable and efficient name lookup in content-centric networking. IFIP networking.

  16. Sleator, D. D., & Tarjan, R. E. (1985). Amortized efficiency of list update and paging rules. Communication of the ACM, 28, 202–208.

    Article  MathSciNet  Google Scholar 

  17. Spyropoulos, T., Rais, R. N. B., Turletti, T., Obraczka, K., & Vasilakos, A. (2010). Routing for disruption tolerant networks: Taxonomy and design. Wireless Networks, 16(8), 2349–2370.

    Article  Google Scholar 

  18. Vasilakos, A. V., Saltouros, M. P., Atlassis, A. F., & Pedrycz, W. (2003). Optimizing qos routing in hierarchical ATM networks using computational intelligence techniques. IEEE Transactions on Systems, Man, and Cybernetics, 33(3), 297–312.

    Article  Google Scholar 

  19. Vasilakos, A. V., Zhang, Y., & Spyropoulos, T. (2012). Delay tolerant networks: Protocols and applications. Boca Raton: CRC Press.

    Google Scholar 

  20. Wang, X., Vasilakos, A. V., Chen, M., Liu, Y., & Kwon, T. T. (2012). A survey of green mobile networks: Opportunities and challenges. MONET, 17(1), 4–20.

    Google Scholar 

  21. Xiang, L., Luo, J., & Vasilakos, A. V. (2011). Compressed data aggregation for energy efficient wireless sensor networks. In IEEE SECON.

  22. Yao, Y., Cao, Q., & Vasilakos, A. V. (2013). An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for wireless sensor networks. In MASS (pp. 182–190).

  23. Yen, Y. S., Chao, H. C., Chang, R. S., & Vasilakos, A. V. (2011). Flooding-limited and multi-constrained QoS multicast routing based on the genetic algorithm for MANETs. Mathematical and Computer Modelling, 53, 2238–2250.

    Article  Google Scholar 

  24. Youssef, M., Ibrahim, M., Abdelatif, M., Che, L., & Vasilakos, A. V. (2014). Routing metrics of cognitive radio networks: A survey. IEEE Communications Surveys and Tutorials, 16(1), 92–109.

    Article  Google Scholar 

  25. Zeng, Y., Xiang, K., Li, D., & Vasilakos, A. V. (2013). Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Networks, 19(2), 161–173.

    Article  Google Scholar 

  26. Zhou, L., Chao, H. C., & Vasilakos, A. V. (2011). Joint forensics-scheduling strategy for delay-sensitive multimedia applications over heterogeneous networks. IEEE Journal on Selected Areas in Communications, 29(7), 1358–1367.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Ghiyasvand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghiyasvand, M., Ramezanipour, A. Minimum average relative load for online routing. Wireless Netw 21, 2609–2615 (2015). https://doi.org/10.1007/s11276-015-0933-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-0933-0

Keywords

Navigation