Skip to main content
Log in

ACWSN: an adaptive cross layer framework for video transmission over wireless sensor networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Wireless multimedia sensor networks (WMSNs), have limited resources in terms of computational, memory, bandwidth, and battery capability, which makes transmitting multimedia content over it, is a challenge as multimedia requires QoS guarantee. Recently adopting cross-layer design in WMSNs proved to be a promising approach, which improves quality of service of WSN under various operational conditions. In this work, an adaptive cross layer framework for transmitting multimedia content over WSN (ACWSN) is presented, it is based on an extensive study of Group Of Picture structure effect on quality of multimedia transmission in various wireless channel states that is executed at sink node. It adaptably selects optimum video encoding parameters at application layer according to current wireless channel state which is communicated from physical layer and recommendations communicated from sink node; in addition an AVQ (adaptive video queue) which schedule packets according to its type to drop less important packets in case of network congestion. Simulation results show that ACWSN optimizes video quality in different wireless channel conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Huszak, A., & Imre S. (2010). Analysing GOP structure and packet loss effects on error propagation in MPEG-4 video streams, ISCCSP. In Proceedings of 4th International Symposium on Communiations, Control and Signal Processing, Cyprus (pp. 1–5).

  2. Information Science Institute. (2003). NS-2 network simulator, Software Package. http://www.isi.edu/nsnam/ns/.

  3. Klaue, J., Shieh, C. K., Hwang, W. S., & Ziviani, A. (2008). An evaluation framework for more realistic simulations of MPEG video transmission. Journal of Information Science and Engineering, 24(2), 425–440.

    Google Scholar 

  4. Klaue, J., Rathke, B., & Wolisz A. (2003). EvalVid—a framework for video transmission and quality evaluation. In Proceedings of the 13th international conference on modelling techniques and tools for computer performance evaluation, Urbana, Illinois, USA.

  5. Integrating EvalVid with NS2 (Online). http://hpds.ee.ncku.edu.tw/~smallko/ns2/Evalvid_in_NS2.htm.

  6. MPEG-4 encoder (Online). https://www.ffmpeg.org/.

  7. Wu, H., Claypool, M., & Kinicki, R. E. (2006). Guidelines for selecting practical MPEG Group of Pictures. Innsbruck, Austria: EuroIMSA 2006.

    Google Scholar 

  8. Zulpratita, S. (2013). GOP length effect analysis on H.264/AVC video streaming transmission quality over LTE network. ICCSIT, Indonesia.

  9. Fang, T., & Chau, L. (2005). An error-resilient GOP structure for robust video transmission. IEEE Transactions on Multimedia, 7(6), 1131–1138.

    Article  Google Scholar 

  10. Sousa, R., Mota, E., Silva, E. N., Paixão, K. S. P., Faria, B., Neto, J. B. (2010) GOP size influence in high resolution video streaming over wireless mesh network, Computers and Communications (ISCC), IEEE Symposium, pp. 1, 3, 22–25 June 2010.

  11. Campelli, L., Akyildiz, I. F., Fratta, L., Cesana, M. (2008) A cross-layer solution for ultrawideband based wireless video sensor networks, Global Telecommunications Conference, 2008. IEEE GLOBECOM, pp. 1–6.

  12. Chabalala, S. C., Muddenahalli, T. N., Takawira, F. (2011) Cross-layer adaptive routing protocol for wireless sensor networks, AFRICON, IEEE, pp. 1–6.

  13. Farooq, M. O., Kunz, T., St-Hilaire, M. (2011) Cross layer architecture for supporting multiple applications in Wireless Multimedia Sensor Networks, In 7th International Wireless Communications and Mobile Computing Conference (IWCMC), pp. 388–393.

  14. Xiong, Z., Fan, X., Liu, S., Zhong, Z. (2010) Distributed image coding in wireless multimedia sensor networks: A survey, Advanced Computational Intelligence (IWACI), pp. 618–622.

  15. Tang, X., Wang, Y. (2012) Cross-layer energy efficiency design in wireless sensor networks, In Proceedings of 10th World Congress on Intelligent Control and Automation, China, pp. 2312–2317.

  16. Rosário, D., Costa, R., Santos, A., Braun, T., Cerqueira, E. (2013) QoE-aware Multiple Path Video Transmission for Wireless Multimedia Sensor Networks, Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos—SBRC, pp. 31–44.

  17. Alikhani, S., Kunz, T., St-Hilaire, M., Richard, F. (2010) A central-networked cross-layer design framework for wireless sensor networks, IWCMC ‘10 Proceedings of the 6th International Wireless Communications and Mobile Computing Conference, pp. 301–305.

  18. Boukerche, A., Araujo, R. B., Villas, L. (2007) A Novel QoS Based Routing Protocol for Wireless Actor and Sensor Networks, IEEE Global Telecomm Conference, pp. 4931–4935.

  19. Ros´ario, D., Costa, R., Paraense, H., Machado, K., Cerqueira, E., Braun, T., Zhao, Z. (2012) A hierarchical multi-hop multimedia routing protocol for wireless multimedia sensor networks, Network Protocols and Algorithms, pp. 44–66, 2012.

  20. Akyildiz, I., Melodia, T., Chowdhury, K. (2007) A survey on wireless multimedia sensor networks, Wireless Communications, IEEE, pp. 32–39.

  21. Goff, E. Exploring the protocol stack of wireless sensor networks [Online]. http://www.thecourse.us/Students/Wireless_Sensor_Networks.htm.

  22. Mendes, L., Rodrigues, J. (2011) A survey on cross-layer solutions for wireless sensor networks, Journal of Network and Computer Applications, 523–534.

  23. Srivastava, V., Motani, M. (2005) Cross-layer design: A survey and the road ahead, IEEE Communications Magazine, pp. 112–119.

  24. Wang, H., Wang, W., Wu, S., Hua, K. (2010) A Survey on the cross-Layer design for wireless multimedia sensor networks, 3rd International Conference Mobile Wireless Middleware, operating systems and applications, USA, pp. 474–486.

  25. Costa, D., Guedes, L. (2011) A survey on multimedia-based cross-layer optimization in visual sensor, sensors, pp. 5439–5468.

  26. Vuran, M., Akyildiz, I. (2010) XLP: A cross-layer protocol for efficient communication in wireless sensor networks, IEEE transactions on mobile computing, pp. 1578–1591.

  27. Alrajeh, N., Khan, S., Lloret, J., & Loo, J. (2013). Secure routing protocol using cross-layer design and energy harvesting in wireless sensor networks. International Journal of Distributed Sensor Networks, 2013, 1–11.

    Google Scholar 

  28. Saleem, K., Fisal, N., Hafizah, S., Kamilah, S., Rashid, R., Baguda, Y. (2009) Cross layer based biological inspired self-organized routing protocol for wireless sensor network, TENCON, IEEE, pp. 1–6.

  29. Aghdasi, H., Abbaspour, M., Moghadam, M., Samei, Y. (2008) An energy-efficient and high-quality video transmission architecture in wireless video-based sensor networks, pp. 4529–4559.

  30. Sonmez, C., Isik, S., Donmez, M. Y., Incel, O. D., Ersoy, C. (2012) SUIT: A cross layer image transport protocol with fuzzy logic based congestion control for wireless multimedia sensor networks, new technologies, mobility and security (ntms), 2012 5th International Conference, pp. 1–6.

  31. Wang, W., Peng, D., Wang, H., Sharif, H., Hsiao-Hwa, C. (2008) Energy-constrained distortion reduction optimization for wavelet-based coded image transmission in wireless sensor networks, ieee transactions on multimedia, pp. 1169–1180.

  32. Wang, H., Peng, D., Wang, W., Sharif, H., Chen, H. (2008) Cross-layer routing optimization in multirate wireless sensor networks for distributed source coding based applications, IEEE Transactions on Wireless Communications, pp. 3999–4009.

  33. Song, L., & Hatzinakos, D. (2007). A Cross-Layer Architecture of Wireless Sensor Networks for Target Tracking (pp. 145–158). IEEE/ACM Transactions: Networking.

    Google Scholar 

  34. van der Schaar, M., Turaga, D. S. (2007) Content-based cross-layer packetization and retransmission strategies for delay-sensitive wireless multimedia transmission, IEEE Transaction on Multimedia, pp. 185–197.

  35. Muddenahalli T., Takawira, F. (2009) DRMACSN: New mac protocol for wireless sensor networks, In Proceedings of SATNAC Conference Network Planning & General Topics, RSS, Swaziland.

  36. Gunasekaran, R., Qi, H. (2008) XLRP: Cross layer routing protocol for wireless sensor networks, WCNC. IEEE Wireless Communications Networking Conference, USA, pp. 2135–2140.

  37. Hu, F., Kumar, S. (2003) Multimedia query with QoS considerations for wireless sensor networks in telemedicine. In Proceedings of Society of Photo-Optical Instrumentation Engineers—International Conference on Internet Multimedia Management Systems, Orlando, Florida, USA, September 2003.

  38. A.A Reeves et al. (2005) Remote Monitoring of patients suffering from early symptoms of Dementia. In International Workshop on Wearable and Implantable Body Sensor Networks, April 2005.

  39. Campbell, J., Gibbons, P. B., Nath, S., Pillai, P., Seshan, S., Sukthankar, R. (2005) IrisNet: An Internet-scale architecture for multimedia sensors. In Proceedings of the 13th ACM International conference on Multimedia, pp. 81–88.

  40. Guha, A., Pavan, A., Liu, J. C. L., Roberts, B. A. (1995) Controlling the process with distributed multimedia. IEEE Multimedia, pp. 20–29.

  41. Marina, K. M., Das, S. R. (2006) Ad hoc on-demand multipath distance vector routing, Wireless Communications And Mobile Computing, pp. 969–988.

  42. Karimi, E., Behzad, A. (2011) Improving video delivery over wireless multimedia sensor networks based on queue priority scheduling, 7th International Conference on IEEE Wireless Communications, Networking and Mobile Computing (WiCOM), pp.1–4.

  43. Chikkerur, S., et al. (2011). Objective video quality assessment methods: A classification, review, and performance comparison, Broadcasting. IEEE Transactions on, 57.2, 165–182.

    Google Scholar 

  44. Wang, Z., Wang, W., Xia, Y., Wan, Z., Wang, J., Li, L., & Cai, C. (2014). Visual quality assessment after network transmission incorporating NS2 and Evalvid. The Scientific World Journal, 2014, 1–7.

    Google Scholar 

  45. Wang, Zhengyou, Wang, Wan, Wan, Zheng, Xia, Yanhui, & Lin, Weisi. (2014). No-reference hybrid video quality assessment based on partial least squares regression. Multimedia Tools and Applications. doi:10.1007/s11042-014-2166-0.

    Google Scholar 

  46. Zeng, Yuanyuan, et al. (2013). Real-time data report and task execution in wireless sensor and actuator networks using self-aware mobile actuators. Computer Communications, 36(9), 988–997.

    Article  Google Scholar 

  47. Chen, Min, et al. (2011). Body area networks: A survey. MONET, 16(2), 171–193.

    Google Scholar 

  48. Wan, Zheng, Xiong, Naixue, & Yang, Laurence T. (2015). Cross-layer video transmission over IEEE 802.11e multihop networks. Multimedia Tools and Applications, 74(1), 5–23.

    Article  Google Scholar 

  49. Wan, Zheng, et al. (2014). Adaptive unequal protection for wireless video transmission over IEEE 802.11e networks. Multimedia Tools and Applications, 72(1), 541–571.

    Article  Google Scholar 

  50. Wei, Guiyi, et al. (2011). Prediction-based data aggregation in wireless sensor networks: Combining grey model and Kalman Filter. Computer Communications, 34(6), 793–802.

    Article  Google Scholar 

  51. Xiang, L., et al. (2011) Compressed data aggregation for energy efficient wireless sensor networks. SECON 2011 pp. 46–54.

  52. Liu, X-Y., et al. “CDC: Compressive data collection for wireless sensor networks”, IEEE Transactions on Parallel & Distributed Systems, doi:10.1109/TPDS.2014.2345257.

  53. Yao, Y., et al. (2013) EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for wireless sensor networks. MASS 2013: pp. 182–190.

  54. Yao, Y., et al. (2014) EDAL: an energy-efficient, delay-aware, and lifetime-balancing data collection protocol for heterogeneous wireless sensor networks, doi:10.1109/IEEE/ACM. Transactions on Networking 2014. 2306592.

  55. Li, Mo, et al. (2013). A survey on topology control in wireless sensor networks: Taxonomy, comparative study, and open issues. Proceedings of the IEEE, 101(12), 2538–2557.

    Article  Google Scholar 

  56. Sheng, Z., et al. (2013). A survey on the ietf protocol suite for the internet of things: standards, challenges, and opportunities. Wireless Communications, IEEE, 20(6), 91–98.

    Article  Google Scholar 

  57. He, Daojing, et al. (2012). ReTrust: Attack-resistant and lightweight trust management for medical sensor networks. IEEE Transactions on Information Technology in Biomedicine, 16(4), 623–632.

    Article  Google Scholar 

  58. Zhang, Z., et al. (2012). ECG-cryptography and authentication in body area networks. IEEE Transactions on Information Technology in Biomedicine, 16(6), 1070–1078.

    Article  Google Scholar 

  59. Acampora, G., et al. (2013). A survey on ambient intelligence in healthcare. Proceedings of the IEEE, 101(12), 2470–2494.

    Article  Google Scholar 

  60. Wang, Xiaofei, et al. (2012). A survey of green mobile networks: Opportunities and challenges. MONET, 17(1), 4–20.

    Google Scholar 

  61. Akkaya, Kemal, & Younis, Mohamed. (2005). A survey on routing protocols for wireless sensor networks. Ad Hoc Networks, 3(3), 325–349.

    Article  Google Scholar 

  62. Han, K., et al. (2013). Algorithm design for data communications in duty-cycled wireless sensor networks: A survey. IEEE Communications Magazine, 51(7), 107–113.

    Article  Google Scholar 

  63. Sengupta, Soumyadip, et al. (2012). An evolutionary multiobjective sleep-scheduling scheme for differentiated coverage in wireless sensor networks. IEEE Transactions on Systems, Man, and Cybernetics, Part C, 42(6), 1093–1102.

    Article  Google Scholar 

  64. Zeng, Yuanyuan, et al. (2013). Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Networks, 19(2), 161–173.

    Article  Google Scholar 

  65. Xiao, Yang, et al. (2012). Tight performance bounds of multihop fair access for MAC protocols in wireless sensor networks and underwater sensor networks. IEEE Transactions on Mobile Computing, 11(10), 1538–1554.

    Article  Google Scholar 

  66. Youssef, M., et al. (2014). Routing metrics of cognitive radio networks: A survey. IEEE Communications Surveys and Tutorials, 16(1), 92–109.

    Article  Google Scholar 

  67. Li, P., et al. (2012) CodePipe: An opportunistic feeding and routing protocol for reliable multicast with pipelined network coding. INFOCOM pp. 100–108.

  68. Li, P., et al. (2014). Reliable multicast with pipelined network coding using opportunistic feeding and routing. IEEE Transactions on Parallel & Distributed Systems, 12, 3264–3273.

    Article  Google Scholar 

  69. Yen, Y.-S., Chao, H.-C., Chang, R.-S., & Vasilakos, A. (2011). Flooding-limited and multi-constrained QoS multicast routing based on the genetic algorithm for MANETs. Mathematical and Computer Modelling, 53(11), 2238–2250.

    Article  Google Scholar 

  70. Shen, Zhijie, et al. (2011). Peer-to-peer media streaming: Insights and new developments. Proceedings of the IEEE, 99(12), 2089–2109.

    Article  Google Scholar 

  71. Vasilakos, A., et al. (2012). Delay tolerant networks: Protocols and applications. Boca Raton: CRC Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Ezz El Dien Abd El Kader.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Youssif, A.A.A., Ghalwash, A.Z. & Abd El Kader, M.E.E.D. ACWSN: an adaptive cross layer framework for video transmission over wireless sensor networks. Wireless Netw 21, 2693–2710 (2015). https://doi.org/10.1007/s11276-015-0939-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-0939-7

Keywords

Navigation