Abstract
With the explosive growth of mobile data demand, the fifth generation (5G) mobile network would exploit the enormous amount of spectrum in the millimeter wave (mmWave) bands to greatly increase communication capacity. There are fundamental differences between mmWave communications and existing other communication systems, in terms of high propagation loss, directivity, and sensitivity to blockage. These characteristics of mmWave communications pose several challenges to fully exploit the potential of mmWave communications, including integrated circuits and system design, interference management, spatial reuse, anti-blockage, and dynamics control. To address these challenges, we carry out a survey of existing solutions and standards, and propose design guidelines in architectures and protocols for mmWave communications. We also discuss the potential applications of mmWave communications in the 5G network, including the small cell access, the cellular access, and the wireless backhaul. Finally, we discuss relevant open research issues including the new physical layer technology, software-defined network architecture, measurements of network state information, efficient control mechanisms, and heterogeneous networking, which should be further investigated to facilitate the deployment of mmWave communication systems in the future 5G networks.








Similar content being viewed by others
References
Elkashlan, M., Duong, T. Q., & Chen, H.-H. (2014). Millimeter-wave communications for 5G: Fundamentals: Part I [Guest Editorial]. IEEE Communications Magazine, 52(9), 52–54.
Elkashlan, M., Duong, T. Q., & Chen, H.-H. (2015). Millimeter-wave communications for 5G-Part 2: Applications. IEEE Communications Magazine, 53(1), 166–167.
Doan, C. H., Emami, S., Sobel, D. A., Niknejad, A. M., & Brodersen, R. W. (2004). Design considerations for 60 GHz CMOS radios. IEEE Communications Magazine, 42(12), 132–140.
Gutierrez, F., Agarwal, S., Parrish, K., & Rappaport, T. S. (2009). On-chip integrated antenna structures in CMOS for 60 GHz WPAN systems. IEEE Journal on Selected Areas in Communications, 27(8), 1367–1378.
Rappaport, T. S., Murdock, J. N., & Gutierrez, F. (2011). State of the art in 60-GHz integrated circuits and systems for wireless communications. Proceedings of the IEEE, 99(8), 1390–1436.
ECMC TC48, ECMA standard 387. (2008). High rate 60 GHz PHY, MAC and HDMI PAL.
Ajorloo, H., & Manzuri-Shalmani, M. T. (2013). Modeling beacon period length of the UWB and 60-GHz mmWave WPANs based on ECMA-368 and ECMA-387 standards. IEEE Transactions on Mobile Computing, 12(6), 1201–1213.
IEEE 802.15 WPAN Millimeter Wave Alternative PHY Task Group 3c (TG3c). http://www.ieee802.org/15/pub/TG3c.html.
Draft Standard for Information Technology-Telecommunications and Information Exchange Between Systems-Local and Metropolitan Area Networks-Specific Requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications-Amendment 4: Enhancements for Very High Throughput in the 60 GHz Band, IEEE P802.11ad/D9.0, Oct. 2012.
Khan, F., & Pi, Z. (2011). Millimeter wave mobile broadband (MMB): Unleashing the 3–300 GHz spectrum. In IEEE wireless communications network conference.
Khan, F., & Pi, Z. (2011). An introduction to millimeter wave mobile broadband systems. IEEE Communications Magazine, 49(6), 101–107.
Pietraski, P., Britz, D., Roy, A., Pragada, R., & Charlton, G. (2012). Millimeter wave and terahertz communications: Feasibility and challenges. ZTE Communications, 10(4), 3–12.
Rangan, S., Rappaport, T. S., & Erkip, E. (2014). Millimeter-wave cellular wireless networks: Potentials and challenges. Proceedings of the IEEE, 102(3), 366–385.
Singh, S., Mudumbai, R., & Madhow, U. (2011). Interference analysis for highly directional 60-GHz mesh networks: The case for rethinking medium access control. IEEE/ACM Transactions on Networking (TON), 19(5), 1513–1527.
Yu, M., Rexford, J., Freedman, M. J., & Wang, J. (2010). Scalable flow-based networking with DIFANE. ACM SIGCOMM Computer Communication Review, 41(4), 351–362.
Zhao, Q., & Li, J. (2006). Rain attenuation in millimeter wave ranges. In Proceedings of the IEEE international Symposium antennas, propagation EM theory (pp. 1–4).
Humpleman, R. J., & Watson, P. A. (1978). Investigation of attenuation by rainfall at 60 GHz. Proceedings of the Institution of Electrical Engineers, 125(2), 85–91.
E-band technology. E-band Communications. [Online]. http://www.e-band.com/index.php?id=86.
Rappaport, T., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access, 1, 335–349.
Violette, E. J., Espeland, R. H., & Hand, G. R. (1985). Millimeter-wave urban and suburban propagation measurements using narrow and wide bandwidth channel probes. NTIA Report (pp. 85–184).
Zwick, T., Beukema, T., & Nam, H. (2005). Wideband channel sounder with measurements and model for the 60 GHz indoor radio channel. IEEE Transactions on Vehicular Technology, 54(4), 1266–1277.
Giannetti, F., Luise, M., & Reggiannini, R. (1999). Mobile and personal communications in 60 GHz band: A survey. Wireless Personal Communications, 10, 207–243.
Smulders, P., & Wagemans, A. (1992). Wideband indoor radio propagation measurements at 58 GHz. Electronics Letters, 28(13), 1270–1272.
Smulders, P. F. M., & Correia, L. M. (1997). Characterisation of propagation in 60 GHz radio channels. Electronics & Communication Engineering Journal, 9(2), 73–80.
Daniels, R., Murdock, J., Rappaport, T. S., & Heath, R. (2010). 60 GHz wireless: Up close and personal. IEEE Microwave Magazine, 11(7), 44–50.
Xu, H., Kukshya, V., & Rappaport, T. S. (2002). Spatial and temporal characteristics of 60 GHz indoor channel. IEEE Journal on Selected Areas in Communications, 20(3), 620–630.
Ben-Dor, E., Rappaport, T. S., Qiao, Y., & Lauffenburger, S. J. (2011). Millimeter wave 60 GHz outdoor and vehicle AOA propagation measurements using a broadband channel sounder. In Proceedings of the IEEE global telecommunications conference (pp. 1–6). Houston, USA.
Geng, S., Kivinen, J., Zhao, X., & Vainikainen, P. (2009). Millimeter-wave propagation channel characterization for short-range wireless communications. IEEE Transactions on Vehicular Technology, 58(1), 3–13.
Anderson, C. R., & Rappaport, T. S. (2004). In-building wideband partition loss measurements at 2.5 and 60 GHz. IEEE Transactions on Wireless Communications, 3(3), 922–928.
Daniels, R. C., & Heath, R. W. (2007). 60 GHz wireless communications: Emerging requirements and design recommendations. IEEE Vehicular Technology Magazine, 2(3), 41–50.
Geng, S. Y., Kivinen, J., Zhao, X. W., & Vainikainen, P. (2009). Millimeter-wave propagation channel characterization for short-range wireless communications. IEEE Transactions on Vehicular Technology, 58(1), 3–13.
Manabe, T., et al. (1995). Polarization dependence of multipath propagation and high-speed transmission characteristics of indoor millimeter-wave channel at 60 GHz. IEEE Transactions on Vehicular Technology, 44(2), 268–274.
Manabe, T., et al. (1996). Effects of antenna directivity and polarization on indoor multipath propagation characteristics at 60 GHz. IEEE Journal on Selected Areas in Communications, 14(3), 441–448.
Singh, S., Ziliotto, F., Madhow, U., Belding, E. M., & Rodwell, M. (2009). Blockage and directivity in 60 GHz wireless personal area networks: From cross-layer model to multi hop MAC design. IEEE Journal on Selected Areas in Communications, 27(8), 1400–1413.
MacCartney, G. R., & Rappaport, T. S. (2014). 73 GHz millimeter wave propagation measurements for outdoor urban mobile and backhaul communications in New York City. In Proceedings of the IEEE ICC 2014.
Sun, S., et al. (2014). Millimeter wave multi-beam antenna combining for 5G cellular link improvement in New York City. In Proceedings of the IEEE ICC 2014.
Azar, Y., Wong, G. N., Wang, K., Mayzus, R., Schulz, J. K., Zhao, H., Gutierrez, F., Hwang, D., & Rappaport, T. S. (2013). 28 GHz propagation measurements for outdoor cellular communications using steerable beam antennas in New York City. In Proceedings of the IEEE international conference on communications (pp. 1–6).
Zhao, H., et al. (2013). 28 GHz millimeter wave cellular communication measurements for reflection and penetration loss in and around buildings in New York City. In Proceedings of the IEEE ICC (pp. 5163–5167).
Samimi, M. K. et al. (2013). 28 GHz angle of arrival and angle of departure analysis for outdoor cellular communications using steerable beam antennas in New York City. In Proceedings of the IEEE VTC (pp. 1–6).
Akdeniz, M. R., Liu, Y., Samimi, M. K., Sun, S., Rangan, S., Rappaport, T. S., et al. (2014). Millimeter wave channel modeling and cellular capacity evaluation. IEEE Journal on Selected Areas in Communications, 32(6), 1164–1179.
Nguyen, H. C., Thomas, T., MacCartney, G. R. Jr., Rappaport, T. S., Vejlgaard, B., & Mogensen, P. (2014). Evaluation of empirical ray-tracing model for an urban outdoor scenario at 73 GHz E-Band. In 2014 IEEE 80th vehicular technology conference (VTC Fall) (pp. 1–6). Vancouver, BC.
Thomas, T. A., Nguyen, H. C., MacCartney, G. R., Jr., Rappaport, T. S. (2014). 3D mmWave channel model proposal. In 2014 IEEE 80th vehicular technology conference (VTC Fall) (pp. 1–6). Vancouver, BC.
Thomas, T. A., et al. (2013). 3D extension of the 3GPP/ITU channel model. In Proceedings of the IEEE VTC-Spring 2013.
Murdock, J. N., Ben-Dor, E., Qiao, Y., Tamir, J. I., & Rappaport, T. S. (2012). A 38 GHz cellular outage study for an urban campus environment. In Proceedings of the IEEE wireless communication networking conference (pp. 3085–3090).
Rappaport, T. S., Qiao, Y., Tamir, J. I., Murdock, J. N., & Ben-Dor, E. (2012). Cellular broadband millimeter wave propagation and angle of arrival for adaptive beam steering systems (invited paper). In Proceedings of the IEEE radio wireless Symposium (pp. 151–154).
Rappaport, T. S., Ben-Dor, E., Murdock, J. N., & Qiao, Y. (2012). 38 GHz and 60 GHz angle-dependent propagation for cellular and peer-to-peer wireless communications. In Proceedings of the IEEE international conference communication (pp. 4568–4573).
Alalusi, S., & Brodersen, R. (2006). A 60 GHz phased array in CMOS. In Proceedings of the IEEE CICC (pp. 393–396).
Liu, D., & Sirdeshmukh, R. (2008). A patch array antenna for 60 GHz package applications. In Proceedings of the IEEE AP-S Symposium (pp. 1–4).
Wang, J., Lan, Z., Pyo, C., Baykas, T., Sum, C., Rahman, M., et al. (2009). Beam codebook based beamforming protocol for multi-Gbps millimeter-wave WPAN systems. IEEE Journal of Selected Areas in Communications, 27(8), 1390–1399.
Tsang, Y., Poon, A., & Addepalli, S. (2011). Coding the beams: Improving beamforming training in mmwave communication system. In Proceedings of IEEE global telecommunications conference (pp. 1–6). Houston, USA.
Qiao, J., Shen, X., Mark, J. W., & He, Y. (2015). MAC-layer concurrent beamforming protocol for indoor millimeter-wave networks. IEEE Transactions on Vehicular Technology, 64(1), 327–338.
Collonge, S., Zaharia, G., & Zein, G. E. (2004). Influence of human activity on wide-band characteristics of the 60 GHz indoor radio channel. IEEE Transactions on Wireless Communications, 3(6), 2369–2406.
“WirelessHD: WirelessHD specification overview,” 2009.
Wireless Gigabit Alliance. [online]. http://wirelessgigabitalliance.org/.
Yong, S. K., Xia, P., & Valdes-Garcia, A. (2011). 60 GHz technology for Gbps WLAN and WPAN. Chichester: Wiley.
Razavi, B. (1997). Design considerations for direct-conversion receivers. IEEE Transactions on Circuits and Systems II, 44(6), 428–435.
Hong, W., Baek, K.-H., Lee, Y., Kim, Y., & Ko, S.-T. (2014). Study and prototyping of practically large-scale mmWave antenna systems for 5G cellular devices. IEEE Communications Magazine, 52(9), 63–69.
Hu, S., Xiong, Y.-Z., Wang, L., Li, R., Shi, J., & Lim, T.-G. (2012). Compact high-gain mmWave antenna for TSV-based system-in-package application. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2(5), 841–846.
Liao, S., Wu, P., Shum, K., & Xue, Q. (2015). Differentially fed planar aperture antenna with high gain and wide bandwidth for millimeter wave application. IEEE Transactions on Antennas and Propagation, 63(3), 966–977.
Zwick, T., Liu, D., & Gaucher, B. P. (2006). Broadband planar superstrate antenna for integrated millimeterwave transceivers. IEEE Transactions on Antennas and Propagation, 54(10), 2790–2796.
Mudumbai, R., Singh, S., & Madhow, U. (2009). Medium access control for 60 GHz outdoor mesh networks with highly directional links. In Proceedings of the IEEE INFOCOM 2009 (Mini Conference) (pp. 2871–2875). Rio de Janeiro, Brazil.
Son, I. K., Mao, S., Gong, M. X., & Li, Y. (2012). On frame-based scheduling for directional mmWave WPANs. In Proceedings of the IEEE INFOCOM (pp. 2149–2157). Orlando, FL.
Qiao, J., Cai, L. X., Shen, X., & Mark, J. (2012). STDMA-based scheduling algorithm for concurrent transmissions in directional millimeter wave networks. In Proceedings of the IEEE ICC (pp. 5221–5225). Ottawa, Canada.
Sum, C., Lan, Z., Funada, R., Wang, J., Baykas, T., Rahman, M. A., et al. (2009). Virtual time-slot allocation scheme for throughput enhancement in a millimeter-wave multi-Gbps WPAN system. IEEE Journal on Selected Areas in Communications, 27(8), 1379–1389.
Kang, H., Ko, G., Kim, I., Oh, J., Song, M., & Choi, J. (2013). Overlapping BSS interference mitigation among WLAN systems. In Proceedings of the IEEE 2013 international conference ICT convergence (pp. 913–917). Jeju, South Korea.
Chen, Q., Peng, X., Yang, J., & Chin, F. (2012). Spatial reuse strategy in mmWave WPANs with directional antennas. In Proceedings of the 2012 IEEE GLOBECOM (pp. 5392–5397). Anaheim, CA.
An, X., & Hekmat, R. (2008). Directional MAC protocol for millimeter wave based wireless personal area networks. In Proceedings of the IEEE VTC-Spring’08 (pp. 1636–1640). Singapore.
Pyo, C. W., Kojima, F., Wang, J., Harada, H., & Kato, S. (2009). MAC enhancement for high speed communications in the 802.15.3c mm Wave WPAN. Springer Wireless Personal Communications, 51(4), 825–841.
Cai, L. X., Cai, L., Shen, X., & Mark, J. W. (2010). REX: A randomized EXclusive region based scheduling scheme for mmWave WPANs with directional antenna. IEEE Transactions on Wireless Communications, 9(1), 113–121.
Sum, C.-S., Lan, Z., Rahman, M. A. et al. (2009). A multi-Gbps millimeter-wave WPAN system based on STDMA with heuristic scheduling. In Proceedings of the IEEE GLOBECOM (pp. 1–6). Honolulu, HI.
Qiao, J., Cai, L. X., Shen, X., et al. (2011). Enabling multi-hop concurrent transmissions in 60 GHz wireless personal area networks. IEEE Transactions on Wireless Communications, 10(11), 3824–3833.
Shihab, E., Cai, L., & Pan, J. (2009). A distributed asynchronous directional-to-directional MAC protocol for wireless ad hoc networks. IEEE Transactions on Vehicular Technology, 58(9), 5124–5134.
Gong, M. X., Stacey, R. J., Akhmetov, D., & Mao, S. (2010). A directional CSMA/CA protocol for mmWave wireless PANs. In Proceedings of the IEEE WCNC’10 (pp. 1–6). Sydney, NSW.
Singh, S., Mudumbai, R., & Madhow, U. (2010). Distributed coordination with deaf neighbors: Efficient medium access for 60 GHz mesh networks. In Proceedings of the IEEE INFOCOM (pp. 1–9). San Diego, CA.
Chen, Q., Tang, J., Wong, D., Peng, X., & Zhang, Y. (2013). Directional cooperative MAC protocol design and performance analysis for IEEE 802.11ad WLANs. IEEE Transactions on Vehicular Technology, 62(6), 2667–2677.
Park, H., Park, S., Song, T., & Pack, S. (2013). An incremental multicast grouping scheme for mmWave networks with directional antennas. IEEE Communications Letters, 17(3), 616–619.
Scott-Hayward, S., & Garcia-Palacios, E. (2015). Multimedia resource allocation in mmWave 5G networks. IEEE Communications Magazine, 53(1), 240–247.
Sato, K., & Manabe, T. (1998). Estimation of propagation-path visibility for indoor wireless LAN systems under shadowing condition by human bodies. In 48th IEEE vehicular technology conference (pp. 2109–2113).
Dong, K., Liao, X., & Zhu, S. (2012). Link blockage analysis for indoor 60 GHz radio systems. Electronics Letters, 48(23), 1506–1508.
Genc, Z., et al. (2010). Robust 60 GHz indoor connectivity: Is it possible with reflections? In 2010 IEEE 71st vehicular technology conference (pp. 1–5). Taipei, Taiwan.
Yiu, C., & Singh, S. (2009). Empirical capacity of mmWave WLANs. IEEE Journal on Selected Areas in Communications, 27(8), 1479–1487.
An, X., et al. (2009). Beam switching support to resolve link-blockage problem in 60 GHz WPANs. In 2009 IEEE 20th international Symposium on personal, indoor and mobile radio communications (pp. 390–394). Tokyo, Japan.
Park, M., & Pan, H. K. (2012). A spatial diversity technique for IEEE 802.11ad WLAN in 60 GHz band. IEEE Communications Letters, 16(8), 1260–1262.
Xiao, Z. (2013). Suboptimal spatial diversity scheme for 60 GHz millimeter-wave WLAN. IEEE Communications Letters, 17(9), 1790–1793.
Singh, S., Ziliotto, F., Madhow, U., Belding, E. M., & Rodwell, M. J. W. (2007). Millimeter wave WPAN: Cross-layer modeling and multihop architecture. In IEEE INFOCOM (pp. 2336–2240). Anchorage, US.
Lan, Z., et al. (2010). Directional relay with spatial time slot scheduling for mmWave WPAN systems. In Proceedings of the VTC-Spring 2010 (pp. 1–5). Taipei, Taiwan.
Lan, Z., Sum, C., Wang, J., Baykas, T., Kojima, F., Nakase, H., et al. (2009). Relay with deflection routing for effective throughput improvement in Gbps millimeter-wave WPAN systems. IEEE Journal on Selected Areas in Communications, 27(8), 1453–1465.
Zhang, X., et al. (2012). Improving network throughput in 60 GHz WLANs via multi-AP diversity. In 2012 IEEE international conference on communications (pp. 4803–4807). Ottawa, Canada.
Niu, Y., Li, Y., Jin, D., Su, L., & Wu, D. (2015). Blockage robust and efficient scheduling for directional mmWave WPANs. IEEE Transactions on Vehicular Technology, 64(2), 728–742.
Wang, J., et al. (2010). Exploring multipath capacity for indoor 60 GHz radio networks. In 2010 IEEE international conference on communications (pp. 1–6). Cape Town, South Africa.
IEEE doc. 11-09-0334-08-00ad. (2010). Channel models for 60 GHz WLAN systems.
Lu, L., Zhang, X., Funada, R., Sum, C. S., & Harada, H. (2011). Selection of modulation and coding schemes of single carrier PHY for 802.11ad multi-gigabit mmWave WLAN systems. In 2011 IEEE Symposium on computers and communications (ISCC) (pp. 348–352).
Gudipati, A., Perry, D., Li, L. E., & Katti, S. (2013). SoftRAN: Software defined radio access network. In Proceedings of the ACM HotSDN 2013 (pp. 25–30). Hong Kong, China.
Bejerano, Y., & Bhatia, R. (2006). Mifi: A framework for fairness and QoS assurance in current IEEE 802.11 networks with multiple access points. IEEE Transactions on Networking, 14(4), 849–862.
Arbaugh, W., Mishra, A., & Shin, M. (2003). An empirical analysis of the IEEE 802.11 MAC layer handoff process. ACM SIGCOMM Computer Communication Review, 33(2), 93–102.
Bejerano, Y., Han, S., & Li, L. (2007). Fairness and load balancing in wireless lans using association control. IEEE Transactions on Networking, 15(3), 560–573.
Athanasiou, G., Weeraddana, C., Fischione, C., & Tassiulas, L. (2015). Optimizing client association in 60 GHz wireless access networks. IEEE/ACM Transactions on Networking (to appear).
Van Quang, B., Prasad, R. V., Niemieeger, I., & Huong, N. T. V. (2010). A study on handoff issues in radio over fiber network at 60 GHz. In 2010 Third international conference on communications and electronics (ICCE) (pp. 50–54).
Tsagkaris, K., Vyrsokinos, K., Pleros, N., & Tselikas, N. D. (2009). Seamless communication in picocellurar 60 GHz radio-over-fiber networks. In IEEE/LEOS summer topical meeting (pp. 59–60).
Pleros, N., Tsagkaris, K., & Tselikas, N. D. (2008). A moving extended cell concept for seamless communication in 60 GHz radio-over-fiber networks. IEEE Communications Letters, 12(11), 852–854.
Ghosh, A., Thomas, T. A., Cudak, M. C., Ratasuk, R., Moorut, P., Vook, F. W., et al. (2014). Millimeter-wave enhanced local area systems: A high-data-rate approach for future wireless networks. IEEE Journal on Selected Areas in Communications, 32(6), 1152–1163.
Rappaport, T. S., et al. (2013). Special session on mmWave communications. In Proceedings of the ICC. Budapest, Hungary.
Baldemair, R., Irnich, T., Balachandran, K., Dahlman, E., Mildh, G., Seln, Y., et al. (2015). Ultra-dense networks in millimeter-wave frequencies. IEEE Communications Magazine, 53(1), 202–208.
Singh, H., Oh, J., Kweon, C., Qin, X., Shao, H., & Ngo, C. (2008). A 60 GHz wireless network for enabling uncompressed video communication. IEEE Communications Magazine, 46(12), 71–78.
Wu, D., Wang, J., Cai, Y., & Guizani, M. (2015). Millimeter-wave multimedia communications: Challenges, methodology, and applications. IEEE Communications Magazine, 53(1), 232–238.
Rappaport, T., et al. (2013). Broadband millimeter-wave propagation measurements and models using adaptive-beam antennas for outdoor urban cellular communications. IEEE Transactions on Antennas and Propagation, 61(4), 1850–1859.
Bai, T., Alkhateeb, A., & Heath, R. (2014). Coverage and capacity of millimeter-wave cellular networks. IEEE Communications Magazine, 52(9), 70–77.
Bai, T., & Heath, R. (2015). Coverage and rate analysis for millimeter wave cellular networks. IEEE Transactions on Wireless Communications, 14(2), 1100–1114.
Sulyman, A. I., Nassar, A. T., Samimi, M. K., Maccartney, G. R, Jr., Rappaport, T. S., & Alsanie, A. (2014). Radio propagation path loss models for 5G cellular networks in the 28 GHz and 38 GHz millimeter-wave bands. IEEE Communications Magazine, 52(9), 78–86.
Taori, R., & Sridharan, A. (2015). Point-to-multipoint in-band mmwave backhaul for 5G networks. IEEE Communications Magazine, 53(1), 195–201.
Bernardos, C. J., et al. (2013). Challenges of designing jointly the backhaul and radio access network in a cloud-based mobile network. In 2013 Future network and mobile summit (pp. 1–10). Lisboa.
Niu, Y., Gao, C., Li, Y., Su, L., Jin, D., & Vasilakos, A. V. (2015). Exploiting device-to-device transmissions in joint scheduling of access and backhaul for small cells in 60 GHz band. IEEE Journal on Selected Areas in Communications (to appear).
Sun, S., Rappaport, T. S., Heath, R. W., Nix, A., & Rangan, S. (2014). Mimo for millimeter-wave wireless communications: Beamforming, spatial multiplexing, or both? IEEE Communications Magazine, 52(12), 110–121.
Alkhateeb, A., Mo, J., Gonzalez-Prelcic, N., & Heath, R. W. (2014). MIMO precoding and combining solutions for millimeter-wave systems. IEEE Communications Magazine, 52(12), 122–131.
Liu, P., & Springer, A. (2015). Space shift keying (SSK) for LOS communication at mmWave frequencies. IEEE Wireless Communications Letters (to appear).
Wei, L., Hu, R., Qian, Y., & Wu, G. (2014). Key elements to enable millimeter wave communications for 5G wireless systems. IEEE Wireless Communications, 21(6), 136–143.
Roh, W., Seol, J., Park, J., Lee, B., Lee, J., Kim, Y., et al. (2014). Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results. IEEE Communications Magazine, 52(2), 106–113.
El Ayach, O., Rajagopal, S., Abu-Surra, S., Pi, Zhouyue, & Heath, R. W. (2014). Spatially sparse precoding in millimeter wave MIMO systems. IEEE Transactions on Wireless Communications, 13(3), 1499–1513.
Alkhateeb, A., El Ayach, O., Leus, G., & Heath, R. W. (2014). Channel estimation and hybrid precoding for millimeter wave cellular systems. IEEE Journal of Selected Topics in Signal Processing, 8(5), 831–846.
Singh, J., & Ramakrishna, S. (2015). On the feasibility of beamforming in millimeter wave communication systems with multiple antenna arrays. IEEE Transactions on Wireless Communications (to appear).
Han, S., Chih-Lin, I., Xu, Z., & Rowell, C. (2015). Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G. IEEE Communications Magazine, 53(1), 186–194.
Jain, M., Choi, J., Kim, T. T., Bharadia, D., Seth, S., Srinivasan, K., Levis, P., Katti, S., & Sinha, P. (2011). Practical, real-time, full duplex wireless. In Proceedings of ACM MobiCom11 (pp. 300–312).
Radunovic, B., Gunawardena, D., Key, P., Proutiere, A., Singh, N., Balan, V., & Dejean, G. (2010). Rethinking indoor wireless mesh design: Low power, low frequency, full-duplex. In 2010 Fifth IEEE workshop on wireless mesh networks (WIMESH 2010) (pp. 1–6).
Sen, S., Choudhury, R. R., & Nelakuditi, S. (2010). CSMA/CN: Carrier sense multiple access with collision notification. In Proceedings of the sixteenth annual international conference on mobile computing and networking (pp. 25–36). New York, USA.
Tamaki, K., Ari Raptino H., Sugiyama, Y., Bandaiy, M., Saruwatari, S., & Watanabe, T. (2013). Full duplex media access control for wireless multi-hop networks. In IEEE 77th vehicular technology conference (VTC Spring) (pp. 1–5).
Xie, X., & Zhang, X. (2014). Does full-duplex double the capacity of wireless networks? In Infocom14 (pp. 1–9).
Miura, K., & Bandai, M. (2012). Node architecture and MAC protocol for full duplex wireless and directional antennas. In IEEE 23rd international Symposium on personal, indoor and mobile radio communications (PIMRC) (pp. 369–374).
Kim, H., & Feamster, N. (2013). Improving network management with software defined networking. IEEE Communications Magazine, 51(2), 114–119.
McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., et al. (2008). Openflow: Enabling innovation in campus networks. ACM SIGCOMM Computer Communication Review, 38(2), 69–74.
Ning, J., Kim, T.-S., Krishnamurthy, S. V., & Cordeiro, C. (2009). Directional neighbor discovery in 60 GHz indoor wireless networks. In Proceedings of the ACM MSWiM ’09 (pp. 365–373). Tenerife, Spain.
Kim, M., Kim, Y. S., & Lee, W. (2013). Analysis of directional neighbour discovery process in millimetre wave wireless personal area networks. IET Networks, 2(2), 92–101.
Park, H., Kim, Y., Song, T., & Pack, S. (2015). Multi-band directional neighbor discovery in self-organized mmWave ad-hoc networks. IEEE Transactions on Vehicular Technology, 64(3), 1143–1155.
Zheng, K., Zhao, L., Mei, J., Dohler, M., Xiang, W., & Peng, Y. (2015). 10 Gb/s hetsnets with millimeter-wave communications: Access and networking-challenges and protocols. IEEE Communications Magazine, 53(1), 222–231.
Zhao, H., Mayzus, R., Sun, S., Samimi, M., Schulz, J. K., Azar, Y., Wang, K., Wong, G. N., Gutierrez, F., & Rappaport, T. S. (2013). 28 GHz millimeter wave cellular communication measurements for reflection and penetration loss in and around buildings in New York City. In Proceedings of the IEEE international conference communications (pp. 5163–5167).
Damnjanovic, A., Montojo, J., Wei, Y., Ji, T., Luo, T., Vajapeyam, M., et al. (2011). A survey on 3GPP heterogeneous networks. IEEE Wireless Communications, 18(3), 10–21.
Qualcomm, LTE Advanced: Heterogeneous networks, White Paper, Jan. 2011. [Online]. http://www.qualcomm.com/media/documents.
Andrews, J. G., Claussen, H., Dohler, M., Rangan, S., & Reed, M. C. (2012). Femtocells: Past, present, and future. IEEE Journal on Selected Areas in Communications, 30(3), 497–508.
Chandrasekhar, V., Andrews, J. G., & Gatherer, A. (2009). Femtocell networks: A survey. IEEE Communications Magazine, 46(9), 59–67.
Mehrpouyan, H., Matthaiou, M., Wang, R., Karagiannidis, G. K., & Hua, Y. (2015). Hybrid millimeter-wave systems: A novel paradigm for HetNets. IEEE Communications Magazine, 53(1), 216–221.
Lee, K., et al. (2010). Mobile data offloading: How much can WiFi deliver? In Co-NEXT ’10 proceedings of the 6th international conference.
Qiao, J., Shen, X. S., Mark, J. W., Shen, Q., He, Y., & Lei, L. (2015). Enabling device-to-device communications in millimeter-wave 5G cellular networks. IEEE Communications Magazine, 53(1), 209–215.
Pi, Z., & Khan, F. (2011). An introduction to millimeter-wave mobile broadband systems. IEEE Communications Magazine, 49(6), 101–107.
Hu, R. Q., & Qian, Y. (2013). Heterogeneous cellular networks. London: Wiley.
Bansal, M., Mehlman, J., Katti, S., & Levis, P. (2012). Openradio: A programmable wireless dataplane. In Proceedings of the first workshop on hot topics in software defined networks (pp. 109–114).
Acknowledgments
This work was partially supported by the National Natural Science Foundation of China (NSFC) under grant No. 61201189 and 61132002, National High Tech (863) Projects under Grant No. 2011AA010202, Research Fund of Tsinghua University under No. 2011Z05117 and 20121087985, and Shenzhen Strategic Emerging Industry Development Special Funds under No. CXZZ20120616141708264.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Niu, Y., Li, Y., Jin, D. et al. A survey of millimeter wave communications (mmWave) for 5G: opportunities and challenges. Wireless Netw 21, 2657–2676 (2015). https://doi.org/10.1007/s11276-015-0942-z
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11276-015-0942-z