Skip to main content
Log in

Energy-efficient compressed data aggregation in underwater acoustic sensor networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, we propose an energy-efficient compressed data aggregation framework for three-dimensional underwater acoustic sensor networks (UASNs). The proposed framework consists of two layers, where the goal is to minimize the total energy consumption of transmitting the data sensed by nodes. The lower layer is the compressed sampling layer, where nodes are divided into clusters. Nodes are randomly selected to conduct sampling, and then send the data to the cluster heads through random access channels. The upper layer is the data aggregation layer, where full sampling is adopted. We also develop methods to determine the number of clusters and the probability that a node participates in data sampling. Simulation results show that the proposed framework can effectively reduce the amount of sampling nodes, so as to reduce the total energy consumption of the UASNs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. vec(\(\cdot\)) refers to an operator that transforms a \(k\,\times \, k\) matrix into a \(kk\,\times \, 1\) vector, i.e., \({\hbox {vec}}({\mathbf {X}}) = [x_{11},\ldots ,x_{k1}, x_{12},\ldots , x_{k2}, \ldots ,x_{1k},\ldots ,x_{kk}]^{T}\), and \(\otimes\) is the Kronecker Product.

References

  1. Anna, G., & Indyk, P. (2014). Compressive sensing using the modified entropy functional. Digital Signal Processing, 24, 63–70.

    Article  MathSciNet  Google Scholar 

  2. Bajwa, W., Haupt, J., Sayeed, A., Nowak, R. (2006). Compressive wireless sensing. In Proceedings of ACM/IEEE IPSN (pp. 134–142).

  3. Bajwa, W. U., Haupt, J. D., Sayeed, A. M., & Nowak, R. D. (2007). Joint source–channel communication for distributed estimation in sensor networks. IEEE Transactions on Information Theory, 53(10), 3629–3653.

    Article  MathSciNet  MATH  Google Scholar 

  4. Baraniuk, R. (2007). Compressive sensing. IEEE Signal Processing Magazine, 24(4), 118–121.

    Article  MathSciNet  Google Scholar 

  5. Baraniuk, R., Davenport, M., DeVore, R., & Wakin, M. (2008). A simple proof of the restricted isometry property for random matrices. Constructive Approximation, 28(3), 253–263.

    Article  MathSciNet  MATH  Google Scholar 

  6. Baron, D., Wakin, M.B., M.F.D. (2005). Distributed compressed sensing. In TREE-0612, Rice University.

  7. Candes, E., Romberg, J., & Tao, T. (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52(2), 489–509.

    Article  MathSciNet  MATH  Google Scholar 

  8. Candes, E., & Tao, T. (2006). Near-optimal signal recovery from random projections: Universal encoding strategies? IEEE Transactions on Information Theory, 52(12), 5406–5425.

    Article  MathSciNet  MATH  Google Scholar 

  9. Cheng, J., Ye, Q., Jiang, H., Wang, D., & Wang, C. (2013). STCDG: An efficient data gathering algorithm based on matrix completion for wireless sensor networks. IEEE Transactions on Wireless Communications, 12(2), 850–861.

    Article  Google Scholar 

  10. Chou, C., Rana, R., Hu, W. (2009). Energy efficient information collection in wireless sensor networks using adaptive compressive sensing. In Proceedings of IEEE LCN (pp. 443–450).

  11. Deligiannis, N., Zimos, E., Ofrim, D.M., Andreopoulos, Y., Munteanu, A. (2012). Distributed joint source–channel coding with raptor codes for correlated data gathering in wireless sensor networks. In Proceedings of BodyNets (pp. 279–285).

  12. Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on Information Theory, 52(4), 1289–1306.

    Article  MathSciNet  MATH  Google Scholar 

  13. Donoho, D. L. (2006). For most large underdetermined systems of linear equations, the minimal \(l_1\)-norm solution is also the sparsest solution. Communications on Pure and Applied Mathematics, 59(6), 797–829.

    Article  MathSciNet  MATH  Google Scholar 

  14. Fazel, F., Fazel, M., & Stojanovic, M. (2011). Random access compressed sensing for energy-efficient underwater sensor networks. IEEE Journal on Selected Areas in Communications, 29(8), 1660–1670.

    Article  Google Scholar 

  15. Fazel, F., Fazel, M., & Stojanovic, M. (2012). Compressed sensing in random access networks with applications to underwater monitoring. Physical Communication, 5(2), 148–160.

    Article  Google Scholar 

  16. Goel, K., & Bindal, A. (2014). Energy issues in underwater wireless sensor network: A survey report. International Journal of Reviews, Surveys and Research, 3(2), 59–68.

    Google Scholar 

  17. Javan, N.T., Sabaei, M., Dehghan, M. (2013). Energy and throughput tradeoff in WSN with network coding. In Proceedings of IEEE ICTC (pp. 304–309).

  18. Ji, S., He, J., & Cai, Z. (2014). Data gathering in wireless sensor networks. The Art of Wireless Sensor Networks Signals and Communication Technology, 16(3), 1339–1368.

    Google Scholar 

  19. Jiang, H., Cheng, J., Wang, D., Wang, C., & Tan, G. (2012). A general framework for efficient continuous multidimensional top-k query processing in sensor networks. IEEE Transactions on Parallel and Distributed Systems, 23(9), 1668–1680.

    Article  Google Scholar 

  20. Jiang, H., Jin, S., & Wang, C. (2011). Prediction or not? An energy-efficient framework for clustering-based data collection in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 22(6), 1064–1071.

    Article  Google Scholar 

  21. Lee, S., Ortega, A. (2010). Joint optimization of transport cost and reconstruction for spatially-localized compressed sensing inmulti-hop sensor networks. In Proceedings of Asia Pacific Signal andInformation Processing Association Summit. Singapore.

  22. Lee, S., Pattem, S., Sathiamoorthy, M., Krishnamachari, B., Ortega, A. (2009). Spatially-localized compressed sensing and routing in multi-hop sensor networks. In Proceedings of International Conference on Geosensor Networks (pp. 19–28)

  23. Luo, C., Wu, F., Sun, J., & Chen, C. (2010). Efficient measurement generation and pervasive sparsity for compressive data gathering. IEEE Transactions on Wireless Communications, 9(12), 3728–3738.

    Article  Google Scholar 

  24. Masiero, R., Quer, G., Munaretto, D., Rossi, M., Widmer, J., Zorzi, M. (2009). Data acquisition through joint compressive sensing and principal component analysis. In Proceedings of IEEE GLOBECOM (pp. 1–6).

  25. Needell, D., & Tropp, J. A. (2010). Cosamp: Iterative signal recovery from incomplete and inaccurate samples. Communications of the ACM, 53(12), 93–100.

    Article  MATH  Google Scholar 

  26. Quer, G., Masiero, R., Munaretto, D., Rossi, M., Widmer, J., Zorzi, M. (2009). On the interplay between routing and signal representation for compressive sensing in wireless sensor networks. In Proceedings of Information Theory and Applications Workshop (pp. 206–215).

  27. Sartipi, M., Fletcher, R. (2011). Energy-efficient data acquisition in wireless sensor networks using compressed sensing. In Proceedings of DCC (pp. 223–232).

  28. Slepian, D., & Wolf, J. K. (1973). Noiseless coding of correlated information sources. IEEE Transactions on Information Theory, 19(4), 471–480.

    Article  MathSciNet  MATH  Google Scholar 

  29. Stankovic, L., Stankovic, S., & Amin, M. (2014). Missing samples analysis in signals for applications to \(l\)-estimation and compressive sensing. Signal Processing, 94, 401–408.

    Article  Google Scholar 

  30. Stojanovic, M. (2007). On the relationship between capacity and distance in an underwater acoustic communication channel. ACM SIGMOBILE Mobile Computing and Communications Review, 11(4), 34–43.

    Article  MathSciNet  Google Scholar 

  31. Stojanovic, M., & Preisig, J. (2009). Underwater acoustic communication channels: Propagation models and statistical characterization. IEEE Communications Magazine, 47(1), 84–89.

    Article  Google Scholar 

  32. Syed, A.A., Heidemann, J. (2006). Time synchronization for high latency acoustic networks. In Proceedings of IEEE INFOCOM (pp. 1–12).

  33. Tsaig, Y., & Donoho, D. L. (2006). Extensions of compressed sensing. Signal Processing, 86(3), 533–548.

    Article  MATH  Google Scholar 

  34. Wang, C., Fang, Y., & Kong, Z. (2012). Energy efficient routing for multi-hop underwater acoustic networks. International Journal of Computer Science Issues (IJCSI), 9(6), 476–483.

    Google Scholar 

  35. Wang, C., Fang, Y., Zhang, H. (2012). On optimizing the transmission power of multi-hop underwater acoustic networks. In Proceedings of 18th IEEE International Conference on Networks (ICON) (pp. 120–124).

  36. Wang, C., Lin, H., & Jiang, H. (2014). Trajectory-based multi-dimensional outlier detection in wireless sensor networks using Hidden Markov Models. Wireless Networks, 20(8), 2409–2418.

    Article  Google Scholar 

  37. Wang, J., Tang, S., Yin, B., Li, X. (2012). Data gathering in wireless sensor networks through intelligent compressive sensing. In Proceedings of IEEE INFOCOM (pp. 603–611).

  38. Zorzi, M., Casari, P., Baldo, N., & Harris, A. F. (2008). Energy-efficient routing schemes for underwater acoustic networks. IEEE Journal on Selected Areas in Communications, 26(9), 1754–1766.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National High-Tech R&D Program (“863” Program) of China under Grants 2014AA01A701 and 2015AA011303; by the National Natural Science Foundation of China under Grants 61271226, 61272410, 61202460 and 61471408; by the National Natural Science Foundation of Hubei Province under Grant 2014CFA040; by the Science and Technology Plan Projects of Wuhan City under Grant 2015010101010022; and by the Fundamental Research Funds for Central Universities under Grant 2015QN073.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqiang Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, H., Wei, W., Zhao, P. et al. Energy-efficient compressed data aggregation in underwater acoustic sensor networks. Wireless Netw 22, 1985–1997 (2016). https://doi.org/10.1007/s11276-015-1076-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-1076-z

Keywords

Navigation