Skip to main content
Log in

Review of vehicular ad hoc network communication models including WVANET (Web VANET) model and WVANET future research directions

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The most ever growing research field is vehicular ad hoc network. This prominent research field has the widely known communication models such as RoadSide Unit Communication, Vehicle to Vehicle Communication, and Cluster based Communication models. In addition to that M. Milton Joe and B. Ramakrishnan et al. have proposed a new communication model known as WVANET (Web VANET) for vehicular ad hoc network communication. The authors portray that WVANET will be the everlasting research field in future. This WVANET (Web VANET) communication model is fundamentally different from other communication models as it makes use of web signals to disseminate the messages among vehicles. Of course, each communication model in VANET will have its own various pros and cons. This paper provides the overall review of all the existing communication models in VANET and in addition to that WVANET (Web VANET) communication model is also presented. Further this paper discusses the various future research that can be done in WVANET (Web VANET) communication model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Joe, M. M., & Ramakrishnan, B. (2015). WVANET: Modelling a novel web based communication architecture for vehicular network. Wireless Personal Communications, 1–15. doi:10.1007/s11277-015-2886-0.

  2. Xiong, H., Chen, Z., & Li, F. (2012). Efficient and multi-level privacy-preserving communication protocol for VANET. Computers & Electrical Engineering, 38, 573–581.

    Article  Google Scholar 

  3. Ramakrishnan, B., Rajesh, R. S., & Shaji, R. S. (2010). Performance analysis of 802.11 and 802.11p in cluster based simple highway mode. International Journal of Computer Science and Technologies, 1(5), 420–426.

    Google Scholar 

  4. Ramakrishnan, B., Joe, M. M., & Nishanth, R. B. (2014). Modeling and simulation of efficient cluster based manhattan model for vehicular communication. Journal of Emerging Technologies in Web Intelligence, 6(2), 253–261.

    Google Scholar 

  5. Duarte, P. B. F., Fadlullah, Z. M., Vasilakos, A. V., & Kato, N. (2012). On the partially overlapped channel assignment on wireless mesh network backbone: A game theoretic approach. IEEE Journal on Selected Areas in Communications, 30(1), 119–127.

    Article  Google Scholar 

  6. Sandonis, V., Calderon, M., Soto, I., & Bernardos, C. J. (2013). Design and performance evaluation of a PMIPv6 solution for geonetworking-based VANETs. Ad Hoc Networks, 11, 2069–2082.

    Article  Google Scholar 

  7. Wahab, O. A., Otrok, H., & Mourad, A. (2013). VANET QoS-OLSR: QoS-based clustering protocol for vehicular ad hoc networks. Computer Communications, 36, 1422–1435.

    Article  Google Scholar 

  8. Hongseok, Y., & Dongkyun Kim, K. (2011). Repetition-based cooperative broadcasting for vehicular ad-hoc networks. Computer Communications, 34(15), 1870–1882.

    Article  Google Scholar 

  9. Isaac, J.-T., Camara, J.-S., Zeadally, S., & Marquez, J.-T. (2012). A Secure vehicle-to-roadside communication payment protocol in vehicular ad hoc networks. Computer Communications, 31(10), 2478–2484.

    Article  Google Scholar 

  10. Yousefi, S., Altman, E., El-Azouzi, R., & Fathy, M. (2008). Improving connectivity in vehicular ad hoc networks: An analytical study. Computer Communications, 31(9), 1653–1659.

    Article  Google Scholar 

  11. Lim, S., Yu, C., & Das, C.-R. (2012). Cache invalidation strategies for internet-based vehicular ad hoc networks. Computer Communications, 35(3), 380–391.

    Article  Google Scholar 

  12. Shieh, W.-Y., Lee, W.-H., & Shen, L. (2006). Analysis of the optimum configuration of roadside units and onboard units in dedicated short-range communication systems. IEEE Transactions on Intelligent Transportation Systems, 7(4), 565–571.

    Article  Google Scholar 

  13. Joe, M. M., Shaji, R. S., & Thulasi, R. (2013). Modeling Network Communication in VANET using Bluetooth Technology. International Journal of Advanced and Innovative Research, 2(3), 643–651.

    Google Scholar 

  14. Joe, M. M., Ramakrishnan, B., & Shaji, R. S. (2014). Modeling GSM based network communication in vehicular network. IJCNIS, 6(3), 37–43. doi:10.5815/ijcnis.2014.03.05.

    Article  Google Scholar 

  15. Tuteja, A., Gujral, R., & Thalia, S. (2010). Comparative performance analysis of DSDV, AODV and DSR routing protocols in MANET Using NS2. In International conference on ACE (pp. 330–333).

  16. Joe, M. M., Shaji, R. S., & Ashok Kumar, K. (2013). Establishing inter vehicle wireless communication in vanet and preventing it from hackers. IJCNIS, 5(8), 55–61. doi:10.5815/ijcnis.2013.08.07.

    Article  Google Scholar 

  17. Wang, X., et al. (2012). A survey of green mobile networks: Opportunities and challenges. MONET, 17(1), 4–20.

    Google Scholar 

  18. Rahimi, M. R., Venkatasubramanian, N., & Vasilakos, A. V. (2013). MuSIC: Mobility-aware optimal service allocation in mobile cloud computing. In IEEE CLOUD (pp. 75–82).

  19. Meng, T., Wu, F., Yang, Z., Chen, G., & Vasilakos, A. V. (2015). Spatial reusability-aware routing in multi-hop wireless networks. IEEE Transactions on Computers, PP(99), 1–13. doi:10.1109/TC.2015.2417543.

  20. Yao, Y., Cao, Q., & Vasilakos, A. V. (2013). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for wireless sensor networks. In Mobile ad-hoc and sensor systems (MASS), 2013 IEEE 10th international conference on 14–16 Oct (pp. 182–190). Hangzhou: IEEE.

  21. Wei, G., Ling, Y., Guo, B., Xiao, B., & Vasilakos, A. V. (2011). Prediction-based data aggregation in wireless sensor networks: Combining grey model and Kalman Filter. Computer Communications, 34(6), 793–802.

    Article  Google Scholar 

  22. Liu, X.-Y., Zhu, Y., Kong, L., Cong Liu, Y., Vasilakos, A. V., & Min-You, W. (2015). CDC: Compressive data collection for wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 26(8), 2188–2197.

    Article  Google Scholar 

  23. Vasilakos, A. V., Li, Z., Simon, G., & You, W. (2015). Information centric network: Research challenges and opportunities. Journal of Network and Computer Applications, 52, 1–10.

    Article  Google Scholar 

  24. Yang, M., Li, Y., Jin, D., Zeng, L., Xin, W., & Vasilakos, A. V. (2015). Software-defined and virtualized future mobile and wireless networks: A survey. MONET, 20(1), 4–18.

    Google Scholar 

  25. Sheng, Z., et al. (2013). A survey on the IETF protocol suite for the internet of things: Standards, challenges, and opportunities. IEEE Wireless Communications 20(6), 91–98.

  26. http://en.wikipedia.org/wiki/Web_service.

  27. Joe, M. M., Ramakrishnan, B., & Shaji, R. S. (2013). Prevention of losing user account by enhancing security module: A facebook case. Journal of Emerging Technologies in Web Intelligence, 5(3), 247–256.

    Article  Google Scholar 

  28. Shehab, M., Squicciarini, A., Ahn, G.-J., & Kokkinou, I. (2012). Access control for online social networks third party applications. Computers & Security, 31, 897–911.

    Article  Google Scholar 

  29. Joe, M. M., & Ramakrishnan, B. (2014). Enhancing security module to prevent data hacking in online social networks. Journal of Emerging Technologies in Web Intelligence, 6(2), 184–191.

    Article  Google Scholar 

  30. Yin, H., Fu, Q., Lin, C., Lin, C., Ding, R., Lin, Y., et al. (2006). Mobile police information system based on web services. In Tsinghua science and technology (Vol. 11(1), pp. 1–7), ISSN 1007-0214 01/21.

  31. Joe, M. M., & Ramakrishnan, D. B. (2014). A survey of various security issues in online social networks. International Journal of Computer Networks and Applications, 1(1), 11–14.

    Google Scholar 

  32. Shivaldova, V., Paier, A., Smely, D., & Mecklenbráuker, C. F. (2012). On roadside unit antenna measurements for vehicle-to-infrastructure communications. In 23d IEEE international symposium on personal, indoor and mobile communications (PIMRC).

  33. Kumar, N., Chilamkurti, N., & Rodrigues, J. J. P. C. (2014). Learning automata-based opportunistic data aggregation and forwarding scheme for alert generation in vehicular ad hoc networks. Computer Communications, 39, 22–32.

    Article  Google Scholar 

  34. Zhang, X. M., Zhang, Y., Yan, F., & Vasilakos, A. V. (2015). Interference-based topology control algorithm for delay-constrained mobile Ad hoc networks. IEEE Transactions on Mobile Computing, 14(4), 742–754.

    Article  Google Scholar 

  35. Yen, Y.-S., Chao, H.-C., Chang, R.-S., & Vasilakos, A. (2011). Flooding-limited and multi-constrained QoS multicast routing based on the genetic algorithm for MANETs. Mathematical and Computer Modelling, 53(11–12), 2238–2250.

    Article  Google Scholar 

  36. Li, P., Guo, S., Yu, S., & Vasilakos, A. V. (2014). Reliable multicast with pipelined network coding using opportunistic feeding and routing. IEEE Transactions on Parallel and Distributed Systems, 25(12), 3264–3273.

    Article  Google Scholar 

  37. Spyropoulos, T., Rais, R. N. B., Turletti, T., Obraczka, K., & Vasilakos, A. (2010). Routing for disruption tolerant networks: Taxonomy and design. Wireless Networks, 16(8), 2349–2370.

    Article  Google Scholar 

  38. Li, P., Guo, S., Yu, S., & Vasilakos, A.V. (2012) CodePipe: An opportunistic feeding and routing protocol for reliable multicast with pipelined network coding. In INFOCOM (pp. 100–108).

  39. Xiang, X., Qin, W., & Xiang, B. (2014). Research on a DSRC-based rear-end collision warning model. IEEE Transactions on Intelligent Transportation Systems, 15(3), 1054–1065.

  40. Ramakrishnan, B., Rajesh, R. S., & Shaji, R. S. (2010). An efficient vehicular communication outside the city environments. International Journal of Next-Generation Networks (IJNGN), 2(4), 1.

    Article  Google Scholar 

  41. Ramakrishnan, B., Rajesh, R. S., & Shaji, R. S. (2011). CBVANET: A cluster based vehicular ad hoc network model for simple highway communication. International Journal of Advanced Networking and Applications, 2(4), 755–761.

    Google Scholar 

  42. Viriyasitavat, W., Boban, M., Tsai, H.-M., & Vasilakos, A. V. (2015). Vehicular communications: Survey and challenges of channel and propagation models. IEEE Vehicular Technology Magazine, 10(2), 55–66.

    Article  Google Scholar 

  43. Zhou, L., Zhang, Y., Song, K., Jing, W., & Vasilakos, A. V. (2011). Distributed media services in P2P-based vehicular networks. IEEE T. Vehicular Technology, 60(2), 692–703.

    Article  Google Scholar 

  44. Zeng, Y., Xiang, K., Li, D., & Vasilakos, A. V. (2013). Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Networks, 19(2), 161–173.

    Article  Google Scholar 

  45. Nishanth, R. B., Ramakrishnan, B., & Selvi, M. (2015). Improved signcryption algorithm for information security in networks. International Journal of Computer Networks and Applications (IJCNA), 2(3), 151–157.

  46. Ramakrishnan, B., Rajesh, R. S., & Namesh, C. (2010). A study on service procedure in clustered vehicular communication. International Journal of Advanced Research in Computer Science, 1(4), 535–542.

  47. Ramakrishnan, B. (2010). Analytical study of cluster and sans cluster vehicular adhoc network communication. International Journal of Computer Engineering and Information Technology, 25(1), 01–11.

    Google Scholar 

  48. Ramakrishnan, B., Nishanth, R. B., Joe, M. M., & Shaji, R. S. (2015). Comprehensive analysis of highway, Manhattan and Freeway mobility models for vehicular ad hoc network. International Journal of Wireless and Mobile Computing, 9(1), 78–89.

    Article  Google Scholar 

  49. Ramakrishnan, B. (2013). Analysis of Manhattan mobility model without RSUs. IOSR Journal of Computer Engineering (IOSR-JCE), 9(5), 82–90.

  50. Ramakrishnan, B., Rajesh, R. S., & Shaji, R. S. (2011). Analysis of routing protocols for highway model without using roadside unit and cluster. International Journal of Scientific & Engineering Research, 2(1), 1–9.

    Article  Google Scholar 

  51. Ramakrishnan, B., Rajesh, D. R. S., & Shaji, R. S. (2010). An intelligent routing protocol for vehicle safety communication in highway environments. Journal of Computing, 2(11), 65–72.

  52. Ramakrishnan, B. (2009). Performance analysis of AODV routing protocol in Vehicular ad-hoc network service discovery architecture. Network, 13(14), 15.

  53. Ramakrishnan, B., Sreedivya, S. R., & Selvi, M. (2015). Adaptive routing protocol based on cuckoo search algorithm (ARP-CS) for secured vehicular ad hoc network (VANET). International Journal of Computer Networks and Applications (IJCNA), 2(4), 173–178.

    Google Scholar 

  54. Busch, C., Kannan, R., & Vasilakos, A. V. (2012). Approximating congestion + dilation in Networks via “Quality of Routing” games. IEEE Transactions on Computers, 61(9), 1270–1283.

    Article  MathSciNet  Google Scholar 

  55. Xiao, Y., Peng, M., Gibson, J., Xie, G. G., Ding-Zhu, D., & Vasilakos, A. V. (2012). Tight performance bounds of multihop fair access for MAC protocols in wireless sensor networks and underwater sensor networks. IEEE Transactions on Mobile Computing, 11(10), 1538–1554.

    Article  Google Scholar 

  56. Vasilakos, A., et al. (2012). Delay tolerant networks: Protocols and applications. Boca Raton: CRC Press.

    Google Scholar 

  57. Youssef, M., et al. (2014). Routing metrics of Cognitive Radio Networks: A survey. IEEE Communications Surveys and Tutorials, 16(1), 92–109.

    Article  Google Scholar 

  58. Vasilakos, A., et al. (1998). Evolutionary-fuzzy prediction for strategic QoS routing in broadband networks. In The 1998 IEEE international conference on fuzzy systems proceedings (Vol. 2, pp. 1488–1493).

  59. Selvi, M., & Ramakrishnan, B. (2015). Prioritized and secured data dissemination technique in VANET based on optimal blowfish algorithm and signcryption method. International Journal of Computer Networks and Applications (IJCNA), 2(4), 165–172.

    Google Scholar 

  60. Dua, A., Kumar, N., & Bawa, S. (2014). A systematic review on routing protocols for vehicular ad hoc networks. Vehicular Communications, 1, 33–52.

    Article  Google Scholar 

  61. Jiang, T., Wang, H., & Vasilakos, A. V. (2012). QoE-driven channel allocation schemes for multimedia transmission of priority-based secondary users over Cognitive Radio Networks. IEEE Journal on Selected Areas in Communications, 30(7), 1215–1224.

    Article  Google Scholar 

  62. Shen, Z., Luo, J., Zimmermann, R., & Vasilakos, A. V. (2011). Peer-to-peer media streaming: Insights and new developments. Proceedings of the IEEE, 99(12), 2089–2109.

    Article  Google Scholar 

  63. Jiau, M.-K., et al. (2015). Multimedia services in cloud-based vehicular networks. IEEE Intelligent Transportation Systems Magazine, 7(3), 62–79.

    Article  Google Scholar 

  64. Zhou, J., et al. (2015). Secure and privacy preserving protocol for cloud-based vehicular DTNs. IEEE Transactions on Information Forensics and Security, 10(6), 1299–1314.

    Article  Google Scholar 

  65. Zhou, L., et al. (2010). Context-aware middleware for multimedia services in heterogeneous networks. IEEE Intelligent Systems, 25(2), 40–47.

    Article  Google Scholar 

  66. Attar, A., et al. (2012). A survey of security challenges in Cognitive Radio Networks: Solutions and future research directions. Proceedings of the IEEE, 100(12), 3172–3186.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Milton Joe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joe, M.M., Ramakrishnan, B. Review of vehicular ad hoc network communication models including WVANET (Web VANET) model and WVANET future research directions. Wireless Netw 22, 2369–2386 (2016). https://doi.org/10.1007/s11276-015-1104-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-1104-z

Keywords