Skip to main content
Log in

A hybrid envelope fluctuations reduction approach using multilayer neural network for MIMO-OFDM signals

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

One of the major drawback in multi-carrier signals is large envelope fluctuations i.e., high peak-to-average power ratio (PAPR). The objective of this paper is to propose neural network based active gradient project sequence, a computationally efficient hybrid method to reduce PAPR in multiple-input multiple-output orthogonal frequency division multiplexing system without sacrificing BER performance. In this paper, a neural network based trained module of approximate gradient project scheme (AGP-NN) is combined in parallel with partial transmit sequence method. The Levenberg–Marquardt training algorithm is used to train neural network based AGP module. The simulation results show that the proposed technique not only outperforms other conventional techniques but also offers less computational complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wu, Y., & Zou, W. Y. (1995). Orthogonal frequency division multiplexing: A multicarrier modulation scheme. IEEE Transactions on Consumer Electronics, 41(3), 392–399.

    Article  Google Scholar 

  2. Soo, Y., Kim, J., Yang, W. Y., & Kang, C. G. (2010). MIMO-OFDM wireless communications with matlab. Hoboken: Wiley.

    Google Scholar 

  3. Yang, K., & Chang, S. (2003). Peak-to-average power control in OFDM using standard arrays of linear block codes. IEEE Communication Letters, 7(4), 174–176.

    Article  Google Scholar 

  4. Li, C. M., & Cheng, Y. Y. (2013). A low complexity partition dummy sequence insertion PAPR reduction method for the OFDM system. Wireless Personal Communications, 68(3), 949–961.

    Article  Google Scholar 

  5. Armstrong, J. (2002). Peak-to-average power reduction for OFDM by repeated clipping and frequency domain filtering. IEEE Electronics Letter, 38(8), 246–247.

    Article  Google Scholar 

  6. Cimini Jr, L. J., & Sollenberger, N. R. (2000). Peak-to-average power ratio reduction of an OFDM signal using partial transmit sequences. IEEE Communication Letter, 4(3), 86–88.

    Article  Google Scholar 

  7. Bäuml, R. W., Fischer, R. F. H., & Huber, J. B. (1996). Reducing the peak-to-average power ratio of multicarrier modulation by selected mapping. IEEE Electronics Letters, 32(22), 2056–2057.

    Article  Google Scholar 

  8. Chen, J. C., & Li, C. P. (2010). Tone reservation using near-optimal peak reduction tone set selection algorithm for PAPR reduction in OFDM systems. IEEE Signal Processing Letters, 17(11), 933–936.

    Article  Google Scholar 

  9. Pachori, K., & Mishra, A. (2015). PAPR Reduction in MIMO-OFDM by using active partial sequence. Circuits, Systems, and Signal Processing. doi:10.1007/s00034-015-0039-z.

  10. Mishra, A., Saxena, R., & Patidar, M. (2015). AGP-NCS scheme for PAPR reduction. Wireless Personal Communications. doi:10.1007/s11277-015-2275-8.

  11. Duanmu, C., & Chen, H. (2014). Reduction of the PAPR in OFDM systems by intelligently applying both PTS and SLM algorithms. Wireless Personal Communications. doi:10.1007/s11277-013-1325-3.

  12. Pachori, K., & Mishra, A. (2015). An efficient combinational approach for PAPR reduction in MIMO-OFDM system. Wireless Networks. doi:10.1007/s11276-015-0974-4.

  13. Mishra, A., Saxena, R., & Patidar, M. (2014). OFDM link with a better performance using artificial neural network. Wireless Personal Communications. doi:10.1007/s11277-013-1593-y.

  14. Jabrane, Y., Jimenez, V. P. G., Armeda, A. G., Said, B. E., & Ouahman, A. A. (2010). Reduction of power envelope fluctuations in OFDM signals by using neural networks. IEEE Communication Letters, 14(7), 599–601.

    Article  Google Scholar 

  15. Jimenez, V. P. G., Jabrane, Y., Armeda, A. G., Said, B. E., & Ouahman, A. A. (2011). Reduction of envelope fluctuations of multi-carrier modulations using adaptive neural fuzzy inference systems. IEEE Transactions on Communications, 59(1), 19–25.

    Article  Google Scholar 

  16. Wong, T. K., Wang, B., & Chen, J. C. (2011). OFDM PAPR reduction by switching null subcarriers and data subcarriers. IEEE Electronics Letters, 47(1), 62–63.

    Article  Google Scholar 

  17. Jiang, T., & Wu, Y. W. (2008). An overview: Peak to average power ratio reduction techniques for OFDM signals. IEEE Transactions on Broadcasting, 54(2), 257–268.

    Article  Google Scholar 

  18. Jones, D. (1999). Peak power reduction in OFDM and DMT via active constellation extension. Proceedings of Asliomar Conference on Signals, Systems and Computers, 2, 1076–1079.

    Google Scholar 

  19. Hagan, M. T., Demuth, H. B., & Beale, M. (2011). Neural network design (4th ed.). New Delhi: Cengage Learning India Pvt. Ltd.

    Google Scholar 

  20. Alamouti, S. M. (1998). A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications, 16, 1451–1458.

    Article  Google Scholar 

  21. Krongold, B. S., & Jones, D. L. (2003). PAR reduction in OFDM via active constellation extension. IEEE Transaction on Broadcasting, 49(3), 258–268.

    Article  Google Scholar 

  22. Tellambura, C. (2001). Improved phase factor computation for the PAR reduction of an OFDM signal using PTS. IEEE Commununication Letters, 5(4), 135–137.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khushboo Pachori.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pachori, K., Mishra, A. A hybrid envelope fluctuations reduction approach using multilayer neural network for MIMO-OFDM signals. Wireless Netw 22, 2705–2712 (2016). https://doi.org/10.1007/s11276-015-1126-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-1126-6

Keywords

Navigation