Skip to main content

Advertisement

Log in

Efficiency measure of routing protocols in vehicular ad hoc network using freeway mobility model

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

To move packets among the vehicles mobility pattern of vehicles in a vehicular network performs an imperative factor for creating competent routing protocol. To reproduce the movement features of vehicles in VANET is the main purpose of the mobility model. Manhattan mobility model is conversed by a lot of researchers. Merely very limited research study is prepared on highway and freeway mobility models. In this document Cluster scheme, different routing protocols are used to the freeway mobility based vehicular architecture. The Ns2.34 simulation effect illustrates the effort of cluster scheme over different protocols and standard 802.11p. The competence of the routing protocols in the vehicular communication by means of freeway movement pattern is estimated by different network parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Sichitiu, M. L. (2002). Mobility models for ad hoc networks. In Proceedings of computer engineering.

  2. Divecha, B., Abraham, A., Grosan, C., & Sanyal, S. (2002). Impact of node mobility on MANET routing protocols models. In Proceedings of computer science.

  3. Bai, F., Sadagopan, N., & Helmy, A. (2003). The important framework for analyzing the impact of mobility on performance of routing protocols for adhoc networks. Proceedings of Computer Science, 1, 383–403.

    Google Scholar 

  4. Rama Krishnan, B. (2012). Performance analysis of AODV routing protocol in Vehicular ad-hoc network service discovery architecture. ARPN Journal of Systems and Software Network, 2(2), 65–72.

    Google Scholar 

  5. Navidi, W., & Camp, T. (2004). Stationary distributions for the random waypoint mobility model. IEEE Transactions on Mobile Computing, 3(1), 99–108.

    Article  Google Scholar 

  6. Mejri, M. N., Ben-Othman, J., & Hamdi, M. (2014). Survey on VANET security challenges and possible cryptographic solutions. Vehicular Communications, 1, 53–66.

    Article  Google Scholar 

  7. Liu, X. Y. (2015). CDC: Compressive Data Collection for Wireless Sensor Networks. IEEE Transactions on Parallel and Distributed Systems, 26(8), 2188–2197.

    Article  Google Scholar 

  8. Chitra, M., & Sathya, S. S. (2013). Efficient broadcasting mechanisms for data dissemination in vehicular ad hoc networks. International Journal of Mobile Network Communications & Telematics (IJMNCT), 3(3), 47–63.

    Article  Google Scholar 

  9. Kalra, U. S., Singh, M., & Malhotra, S. (2014). Effect of varying mobility model on routing protocols under different scalability and offered load over wireless ad-hoc network. International Journal of Advance Research in Computer Science and Management Studies, 2(5), 225–235.

    Google Scholar 

  10. Slavik, M., Mahgoub, I., & Alwakeel, M. M. (2014). Analysis and evaluation of distance-to-mean broadcast method for VANET. Journal of King Saud University-Computer and Information Sciences, 26, 153–160.

    Article  Google Scholar 

  11. Vasilakos, A. V., Li, Z., Simon, G., & You, W. (2015). Information centric network: Research challenges and opportunities. Journal of Network and Computer Applications, 52, 1–10.

    Article  Google Scholar 

  12. Busch, C., Kannan, R., & Vasilakos, A. V. (2012). Approximating congestion + dilation in networks via “quality of routing” games. IEEE Transactions on Computers, 61(9), 1270–1283.

    Article  MathSciNet  Google Scholar 

  13. Li, P., Guo, S., Yu, S., & Vasilakos, A. V. (2014). Reliable multicast with pipelined network coding using opportunistic feeding and routing. IEEE Transactions on Parallel and Distributed Systems, 25(12), 3264–3273.

    Article  Google Scholar 

  14. Yen, Y.-S., Chao, H.-C., Chang, R.-S., & Vasilakos, A. (2011). Flooding-limited and multi-constrained QoS multicast routing based on the genetic algorithm for MANETs. Mathematical and Computer Modelling, 53(11–12), 2238–2250.

    Article  Google Scholar 

  15. Silva, F. A., Boukerche, A., Silva, T. R. M. B., Ruiz, L. B., & Loureiro, A. A. F. (2015). A novel macroscopic mobility model for vehicular networks. Computer Networks, 79, 188–202.

    Article  Google Scholar 

  16. Rama Krishnan, B. (2013). Analysis of Manhattan mobility model without RSUs. IOSR Journal of Computer Engineering (IOSR-JCE), 9(5), 82–90.

    Article  Google Scholar 

  17. Rama Krishnan, B., Rajesh, D. R. S., & Shaji, R. S. (2010). Performance analysis of 802.11 and 802.11 p in cluster based simple highway model. International Journal of Computer Science and Information Technologies, 1(5), 420–426.

    Google Scholar 

  18. Mohan, R., Rajan, C., & Shanthi, N. (2012). A stable mobility model evaluation strategy for MANET routing protocols. Proceedings of International Journal of Advanced Research in Computer Science and Software Engineering, 2(12), 58–65.

    Google Scholar 

  19. Nisar, M. A., Mehmood, A., Nadeem, A., Ahsan, K., & Sarim, M. (2014). A two dimensional performance analysis of mobility models for MANETs and VANETs. Proceedings of Research Journal of Recent Sciences, 3(5), 94–103.

    Google Scholar 

  20. Sofer, T., Polus, A., & Bekhor, S. (2013) A congestion-dependent, dynamic flexibility model of freeway networks. Proceedings of the Journal of Transportation Research Part C, 104–114.

  21. Youssef, M., et al. (2014). Routing metrics of cognitive radio networks: A survey. IEEE Communications Surveys and Tutorials, 16(1), 92–109.

    Article  Google Scholar 

  22. Zhou, L., et al. (2011). Distributed media services in P2P-based vehicular networks. IEEE Transactions on Vehicular Technology, 60(2), 692–703.

    Article  Google Scholar 

  23. Sheng, Z., et al. (2013). A survey on the ietf protocol suite for the internet of things: standards, challenges, and opportunities. Wireless Communications, IEEE, 20(6), 91–98.

    Article  Google Scholar 

  24. Xiao, Y., et al. (2012). Tight performance bounds of multihop fair access for MAC protocols in wireless sensor networks and underwater sensor networks. IEEE Transactions on Mobile Computing, 11(10), 1538–1554.

    Article  Google Scholar 

  25. He, Y., et al. (2013). Semi-random backoff: Towards resource reservation for channel access in wireless LANs. IEEE/ACM Transactions Network, 21(1), 204–217.

    Article  Google Scholar 

  26. Demestichas, P., et al. (2004). Service configuration and traffic distribution in composite radio environments. IEEE Transactions on Systems, Man, and Cybernetics, Part C, 34(1), 69–81.

    Article  Google Scholar 

  27. Zhang, L., Lakas, A., El-Sayed, H., & Barka, E. (2013). Mobility analysis in vehicular ad hoc network (VANET). Journal of Network and Computer Applications, 36(3), 1050–1056.

    Article  Google Scholar 

  28. Wei, G., et al. (2011). Prediction-based data aggregation in wireless sensor networks: Combining grey model and Kalman Filter. Computer Communications, 34(6), 793–802.

    Article  Google Scholar 

  29. Attar, A., et al. (2012). A survey of security challenges in cognitive radio networks: Solutions and future research directions. Proceedings of the IEEE, 100(12), 3172–3186.

    Article  Google Scholar 

  30. Zhou, L., et al. (2011). Joint forensics-scheduling strategy for delay-sensitive multimedia applications over heterogeneous networks. IEEE Journal on Selected Areas in Communications, 29(7), 1358–1367.

    Article  Google Scholar 

  31. Vasilakos, A., et al. (1998). Evolutionary-fuzzy prediction for strategic QoS routing in broadband networks. In Proceedings of the IEEE international conference on fuzzy systems (Vol. 2, pp. 1488–1493).

  32. Zhang, X. M., et al. (2015). Interference-based topology control algorithm for delay-constrained mobile Ad hoc networks. IEEE Transactions on Mobile Computing, 14(4), 742–754.

    Article  Google Scholar 

  33. Duarte, P. B. F., et al. (2012). On the partially overlapped channel assignment on wireless mesh network backbone: A game theoretic approach. IEEE Journal on Selected Areas in Communications, 30(1), 119–127.

    Article  Google Scholar 

  34. Rahimi, M. R., et al. MuSIC: Mobility-aware optimal service allocation in mobile cloud computing. In IEEE CLOUD 2013 (pp. 75–82).

  35. Jiang, T., et al. (2012). QoE-driven channel allocation schemes for multimedia transmission of priority-based secondary users over cognitive radio networks. IEEE Journal on Selected Areas in Communications, 30(7), 1215–1224.

    Article  Google Scholar 

  36. Liu, L., et al. (2015). Physarum optimization: A biology-inspired algorithm for the steiner tree problem in networks. IEEE Transactions on Computers, 64(3), 819–832.

    MathSciNet  Google Scholar 

  37. Meng T., et al. Spatial reusability-aware routing in multi-hop wireless networks. IEEE Transactions on Computers. doi:10.1109/TC.2015.2417543.

  38. Jiau, M.-K., et al. (2015). Multimedia services in cloud-based vehicular networks. IEEE Intelligent Transportation Systems Magazine, 7(3), 62–79.

    Article  Google Scholar 

  39. Rahimi, M. R., et al. (2014). Mobile cloud computing: A survey, state of art and future directions. MONET, 19(2), 133–143.

    Google Scholar 

  40. Shen, Z., et al. (2011). Peer-to-peer media streaming: Insights and new developments. Proceedings of the IEEE, 99(12), 2089–2109.

    Article  Google Scholar 

  41. Rama Krishnan, B., Rajesh, R. S., & Shaji, R. S. (2011). Analysis of routing protocols for highway model without using roadside unit and cluster. International Journal of Scientific & Engineering Research, 2(2), 1–9.

    Google Scholar 

  42. Rama Krishnan, B., Rajesh, R. S., & Shaji, R. S. (2011). CBVANET: A cluster based vehicular adhoc network model for simple highway communication. International Journal of Advanced Networking and Applications, 2(04), 755–761.

    Google Scholar 

  43. Bali, R. S., Kumar, N., & Rodrigues, J. J. P. C. (2014). Clustering in vehicular ad hoc networks: Taxonomy, challenges and solutions. Vehicular Communications, 1, 134–152.

    Article  Google Scholar 

  44. Allouche, Y., & Segal, M. (2015). A cluster based beaconing process for VANET. Vehicular Communications, 2(2), 80–94.

    Article  Google Scholar 

  45. Wahab, O. A., Otrok, H., & Mourad, A. (2013). VANET QoS-OLSR: QoS-based clustering protocol for vehicular ad hoc networks. Computer Communications, 36(13), 1422–1435.

    Article  Google Scholar 

  46. Rahimi, M. R., et al. MAPCloud: Mobile applications on an elastic and scalable 2-tier cloud architecture. In IEEE/ACM UCC 2012 (pp. 83–90).

  47. Zhou, J., et al. (2015). Seure and privacy preserving protocol for cloud-based vehicular DTNs. IEEE Transactions on Information Forensics and Security, 10(6), 1299–1314.

    Article  Google Scholar 

  48. Ramakrishnan, B., Sreedivya, S. R., & Selvi, M. (2015). Adaptive routing protocol based on cuckoo search algorithm (ARP-CS) for secured vehicular ad hoc network (VANET). International Journal of Computer Networks and Applications (IJCNA), 2(4), 173–178.

    Google Scholar 

  49. Viriyasitavat, W., et al. (2015). Vehicular communications: Survey and challenges of channel and propagation models. Vehicular Technology Magazine, IEEE, 10(2), 55–66.

    Article  Google Scholar 

  50. Yang, M., et al. (2015). Software-defined and virtualized future mobile and wireless networks: A survey. MONET, 20(1), 4–18.

    Google Scholar 

  51. Zhou, L., et al. (2010). Context-aware middleware for multimedia services in heterogeneous networks. IEEE Intelligent Systems, 25(2), 40–47.

    Article  Google Scholar 

  52. Acampora, G., et al. (2010). Interoperable and adaptive fuzzy services for ambient intelligence applications. ACM Transactions on Autonomous and Adaptive Systems (TAAS), 5(2), 8.

    Google Scholar 

  53. Quan, W. et al. (2014). TB2F: Tree-bitmap and bloom-filter for a scalable and efficient name lookup in content-centric networking. IFIP Networking.

  54. Xia, F., et al. (2015). Socially aware networking: A survey. IEEE Systems Journal, 9(3), 904–921.

    Article  MathSciNet  Google Scholar 

  55. Dvir, A., et al. (2011). Backpressure-based routing protocol for DTNs. ACM SIGCOMM Computer Communication Review, 41(4), 405–406.

    MathSciNet  Google Scholar 

  56. Yan, Z., et al. (2014). A survey on trust management for Internet of Things. Journal of Network and Computer Applications, 42, 120–134.

    Article  Google Scholar 

  57. Jing, Q., et al. (2014). Security of the internet of things: Perspectives and challenges. Wireless Networks, 20(8), 2481–2501.

    Article  Google Scholar 

  58. Nasir, M. K., Hossain, A. S. M. D., Hossain, M. S., Hasan, M. M., & Ali, M. B. (2013). Security challenges and implementation mechanism for vehicular ad hoc network. International Journal of Scientific & Technology Research, 2(4), 156–161.

    Google Scholar 

  59. Daeinabi, A., & Rahbar, A. G. (2014). An advanced security scheme based on clustering and key distribution in vehicular ad-hoc networks. Computers & Electrical Engineering, 40(2), 517–529.

    Article  Google Scholar 

  60. Nishanth, R. B., Ramakrishnan, B., & Selvi, M. (2015). Improved signcryption algorithm for information security in networks. International Journal of Computer Networks and Applications (IJCNA), 2(3), 151–157.

    Google Scholar 

  61. Mershad, K., Artail, H., & Gerla, Mario. (2012). ROAMER: Roadside units as message routers in VANETs. Ad Hoc Networks, 10, 479–496.

    Article  Google Scholar 

  62. Chaqfeh, M., Lakas, A., & Jawhar, I. (2014). A survey on data dissemination in vehicular ad hoc networks. Vehicular Communications, 1(4), 214–225.

    Article  Google Scholar 

  63. Silva, F. A., Boukerche, A., Silva, T. R. M. B., Ruiz, L. B., & Loureiro, A. A. F. (2015). A novel macroscopic mobility model for vehicular networks. Proceedings of the Journal of Computer Networks, 188–202.

  64. Wang, X., et al. (2012). A survey of green mobile networks: Opportunities and challenges. MONET, 17(1), 4–20.

    Google Scholar 

  65. Emara, K., Woerndl, W., & Schlichter, J. (2015). On evaluation of location privacy preserving schemes for VANET safety applications. Computer Communications, 63, 11–23.

    Article  Google Scholar 

  66. Spyropoulos, T., Rais, R. N. B., Turletti, T., Obraczka, K., & Vasilakos, A. (2010). Routing for disruption tolerant networks: Taxonomy and design. Wireless Networks, 16(8), 2349–2370.

    Article  Google Scholar 

  67. Vasilakos, A., et al. (2012). Delay tolerant networks: Protocols and applications. Boca Raton: CRC Press.

    Google Scholar 

  68. Yao, Y., Cao, Q., & Vasilakos, A. V. (2013). EDAL: An energy efficient, delay-aware, and lifetime-balancing data collection protocol for wireless sensor networks. In Proceedings of the IEEE 10th international conference on mobile ad-hoc and sensor systems (MASS) (pp. 182–190).

  69. Zeng, Y., Xiang, K., Li, D., & Vasilakos, A. V. (2013). Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Networks, 19(2), 161–173.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Selvi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramakrishnan, B., Selvi, M. & Nishanth, R.B. Efficiency measure of routing protocols in vehicular ad hoc network using freeway mobility model. Wireless Netw 23, 323–333 (2017). https://doi.org/10.1007/s11276-015-1143-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-1143-5

Keywords