Skip to main content
Log in

Analytical framework for power saving evaluation in two-tier heterogeneous mobile networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Reducing the power consumption of base stations in mobile networks is an important issue. We investigate the power saving evaluation in two-tier heterogeneous mobile networks which consist of femtocells overlaid by macrocells. In the heterogeneous mobile networks, base stations without traffic load are allowed to enter the sleep mode to save power. The power saving probability that a base station enters the sleep mode and the average total power consumption of this network are complex joint-effects of various factors. Successful modelling of these complex joint-effects is critical to mobile network operators when they pursue the design of green mobile networks. In this paper we propose an analytical framework to facilitate systematic analysis. Based on the proposed analytical framework, we investigate the power saving probabilities and the average total power consumption in terms of several parameters, including the new traffic arrival rate per user, the maximum transmission power of a femtocell, the number of femtocells within a macrocell, and the number of users in the network. Numerical results show that the proposed analytical framework provides a useful and efficient method to facilitate systematic analysis and design of green mobile networks. Simulation results validate the accuracy of the proposed analytical framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chen, Y., Zhang, S., Xu, S., & Li, G. (2011). Fundamental trade-offs on green wireless networks. IEEE Communications Magazine, 49(6), 30–37.

    Article  Google Scholar 

  2. Shakir, M., Qaraqe, K., Tabassum, H., Alouini, M. S., Serpedin, E., & Imran, M. (2013). Green heterogeneous small-cell networks: Toward reducing the \(\text{CO}_2\) emissions of mobile communications industry using uplink power adaptation. IEEE Communications Magazine, 51(6), 52–61.

    Article  Google Scholar 

  3. Hasan, Z., Boostanimehr, H., & Bhargava, V. (2011). Green cellular networks: A survey, some research issues and challenges. IEEE Communications Surveys Tutorials, 13(4), 524–540.

    Article  Google Scholar 

  4. Han, C., Harrold, T., Armour, S., Krikidis, I., Videv, S., Grant, P. M., et al. (2011). Green radio: Radio techniques to enable energy-efficient wireless networks. IEEE Communications Magazine, 49(6), 46–54.

    Article  Google Scholar 

  5. Wang, X., Vasilakos, A. V., Chen, M., Liu, Y., & Kwon, T. T. (2012). A survey of green mobile networks: Opportunities and challenges. Mobile Networks and Applications, 17(1), 4–20.

    Article  Google Scholar 

  6. Hwang, I., Song, B., & Soliman, S. (2013). A holistic view on hyper-dense heterogeneous and small cell networks. IEEE Communications Magazine, 51(6), 20–27.

    Article  Google Scholar 

  7. Kim, Y., Lee, S., & Hong, D. (2010). Performance analysis of two-tier femtocell networks with outage constraints. IEEE Transactions on Wireless Communications, 9(9), 2695–2700.

    Article  Google Scholar 

  8. Small Cell Forum. http://www.smallcellforum.org/. [Online]. Accessed 5 Nov 2015.

  9. Chandrasekhar, V., Andrews, J., & Gatherer, A. (2008). Femtocell networks: A survey. IEEE Communications Magazine, 46(9), 59–67.

    Article  Google Scholar 

  10. Cheung, W. C., Quek, T., & Kountouris, M. (2012). Throughput optimization, spectrum allocation, and access control in two-tier femtocell networks. IEEE Journal on Selected Areas in Communications, 30(3), 561–574.

    Article  Google Scholar 

  11. Elsawy, H., Hossain, E., & Kim, D. I. (2013). HetNets with cognitive small cells: User offloading and distributed channel access techniques. IEEE Communications Magazine, 51(6), 28–36.

    Article  Google Scholar 

  12. Kyunghan, L., Joohyun, L., Yung, Y., Injong, R., & Song, C. (2013). Mobile data offloading: How much can WiFi deliver? IEEE/ACM Transactions on Networking, 21(2), 536–550.

    Article  Google Scholar 

  13. Nguyen-Vuong, Q. T., Agoulmine, N., Cherkaoui, E. H., & Toni, L. (2013). Multicriteria optimization of access selection to improve the quality of experience in heterogeneous wireless access networks. IEEE Transactions on Vehicular Technology, 62(4), 1785–1800.

    Article  Google Scholar 

  14. Wei, W., & Gang, S. (2010). Energy efficiency of heterogeneous cellular network. In 2010 IEEE 72nd vehicular technology conference fall (VTC 2010-Fall) (pp. 1–5).

  15. Barco, R., Lazaro, P., & Munoz, P. (2012). A unified framework for self-healing in wireless networks. IEEE Communications Magazine, 50(12), 134–142.

    Article  Google Scholar 

  16. Gelabert, X., Sayrac, B., & Ben Jemaa, S. (2014). A heuristic coordination framework for self-optimizing mechanisms in LTE HetNets. IEEE Transactions on Vehicular Technology, 63(3), 1320–1334.

    Article  Google Scholar 

  17. Chen, T., Yang, Y., Zhang, H., Kim, H., & Horneman, K. (2011). Network energy saving technologies for green wireless access networks. IEEE Wireless Communications, 18(5), 30–38.

    Article  Google Scholar 

  18. Hou, Y., & Laurenson, D. (2010). Energy efficiency of high QoS heterogeneous wireless communication network. In 2010 IEEE 72nd vehicular technology conference fall (VTC 2010-Fall) (pp. 1–5).

  19. Vidács, A., & Gódor, I. (2011). Power saving potential in heterogeneous cellular mobile networks. In 2011 IEEE 22nd international symposium on personal indoor and mobile radio communications (PIMRC) (pp. 2412–2414).

  20. Navaratnarajah, S., Saeed, A., Dianati, M., & Imran, M. A. (2013). Energy efficiency in heterogeneous wireless access networks. IEEE Wireless Communications, 20(5), 37–43.

    Article  Google Scholar 

  21. Oh, E., Krishnamachari, B., Liu, X., & Niu, Z. (2011). Toward dynamic energy-efficient operation of cellular network infrastructure. IEEE Communications Magazine, 49(6), 56–61.

    Article  Google Scholar 

  22. Overview to LTE energy saving solutions to cell switch off/on, 3GPP R1–100162, Huawei (2010).

  23. Considerations on energy saving solutions in heterogeneous networks, 3GPP R3–092478, Ericsson (2009).

  24. Zhou, S., Gong, J., Yang, Z., Niu, Z., & Yang, P. (2009). Green mobile access network with dynamic base station energy saving. In ACM MobiCom (pp. 10–12).

  25. Litjens, R., & Jorguseski, L. (2010). Potential of energy-oriented network optimisation: Switching off over-capacity in off-peak hours. In 2010 IEEE 21st international symposium on personal indoor and mobile radio communications (PIMRC) (pp. 1660–1664).

  26. Son, K., Kim, H., Yi, Y., & Krishnamachari, B. (2011). Base station operation and user association mechanisms for energy-delay tradeoffs in green cellular networks. IEEE Journal on Selected Areas in Communications, 29(8), 1525–1536.

    Article  Google Scholar 

  27. ITU Recommendation M.2135-1. (2009). Guidelines for evaluation of radio interface technologies for IMT-Advanced.

  28. Lopez-Perez, D., Chu, X., & Guvenc, I. (2012). On the expanded region of picocells in heterogeneous networks. IEEE Journal of Selected Topics in Signal Processing, 6(3), 281–294.

    Article  Google Scholar 

  29. Ye, Q., Rong, B., Chen, Y., Al-Shalash, M., Caramanis, C., & Andrews, J. (2013). User association for load balancing in heterogeneous cellular networks. IEEE Transactions on Wireless Communications, 12(6), 2706–2716.

    Article  Google Scholar 

  30. Auer, G., Giannini, V., Desset, C., Godor, I., Skillermark, P., Olsson, M., et al. (2011). How much energy is needed to run a wireless network? IEEE Wireless Communications, 18(5), 40–49.

    Article  Google Scholar 

  31. Zhang, X., Zhang, J., Wang, W., Zhang, Y., Pan, Z., Li, G., et al. (2015). Macro-assisted data-only carrier for 5G green cellular systems. IEEE Communications Magazine, 53(5), 223–231.

    Article  Google Scholar 

  32. Hu, L. R., & Rappaport Stephen, S. (1995). Personal communication systems using multiple hierarchical cellular overlays. IEEE Journal on Selected Areas in Communications, 13(2), 406–415.

    Article  Google Scholar 

  33. Chung, S. P., & Li, M. T. (2005). Performance evaluation of hierarchical cellular CDMA networks with soft handoff queueing. IEEE Transactions on Vehicular Technology, 54(2), 652–672.

    Article  Google Scholar 

  34. Ge, X., Han, T., Zhang, Y., Mao, G., Wang, C. X., Zhang, J., et al. (2014). Spectrum and energy efficiency evaluation of two-tier femtocell networks with partially open channels. IEEE Transactions on Vehicular Technology, 63(3), 1306–1319.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Information and Communications Research Laboratories of Industrial Technology Research Institute for the widespread support. This work was supported in part by Ministry of Science and Technology (MOST), Taipei, Taiwan under Grant Nos. MOST 104-2218-E-155-002 and MOST 104-2221-E-155-017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Po-Chiang Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, PC., Casanova, L.F.G. & Lin, YC. Analytical framework for power saving evaluation in two-tier heterogeneous mobile networks. Wireless Netw 23, 985–999 (2017). https://doi.org/10.1007/s11276-016-1202-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-016-1202-6

Keywords

Navigation