Skip to main content

Advertisement

Log in

Energy efficient geographical key management scheme for authentication in mobile wireless sensor networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In wireless sensor networks, a sensor node communicates with a small set of neighbour sensor nodes and with the base station through a group leader or a cluster head. However, in some occasions, a sensor node required to move in the sensor networks. The node has to change its own position with the requirement of applications. Considering this phenomena, in this paper, we propose to design an angular function and private key management system authenticated by group leader for the transmission of a node. In the proposed scheme, the group is divided into sectors. The motion of the node is related with the angles to the group leader, which is the basis of our proposal. The nodes movement and activity should be tracked. The proposed scheme attains high connectivity and security with the help of the directional transreceiver. The lifetime of a node is increased, and it enables a node to move through the network and to transmit data to its neighbors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kim, J., Lee, J., & Rim, K. (2010). Energy efficient key management protocol in wireless sensor networks. International Journal of Security and Its Applications, 4(2), 1–12.

    Google Scholar 

  2. Jolly, G., Kuşçu, M. C., Kokate, P., & Younis, M. (2003). A low-energy key management protocol for wireless sensor networks”, In the proceedings of the 8 th IEEE symposium on computers and communications (ISCC’2003).

  3. Kausar, Firdous, Hussain, Sajid, Yang, Laurence T., & Masood, Ashraf. (2008). Scalable and efficient key management for heterogeneous sensor networks. The Journal of Supercomputing Archive, 45(1), 44–65.

    Article  Google Scholar 

  4. De Meulenaer, G., Gosset, F., Standaert, F. X., & Pereira, O. (2008). On the energy cost of communication and cryptography in wireless sensor networks. IEEE international conference on wireless and mobile computing, networking and communications, (WIMOB ‘08), (pp. 580–585).

  5. Kim, J. M., Cho, J. S., Jung, S. M., & Chung, T. M. (2007). An energy-efficient dynamic key management in wireless sensor networks. IEEE 9th international conference on advanced communication technology, (pp. 2148–2153).

  6. Reddy, R. S. (2011). Key mangament in wireless sensor networks using a modified Blom scheme. Cornell University Library, Cryptography and Security.

  7. Hung, L. X., Canh, N. T., Lee, S., Lee, Y. K., & Lee, H. (2008). An energy-efficient secure routing and key management scheme for mobile sinks in wireless sensor networks using deployment knowledge. Sensors. doi:10.3390/s8127753.

    Google Scholar 

  8. Singh, V. P., Jain, S., & Singhai, J. (2010). Hello flood attack and its countermeasures in wireless sensor networks. IJCSI International Journal of Computer Science Issues, 7(3), 23–24.

    Google Scholar 

  9. Sun, D. M., & He, B. (2006). Review of key management mechanisms in wireless sensor networks. Acta Automat Sin, 32(6), 900.

    Google Scholar 

  10. Sheela, D., Nirmala, S., Nath, S., & Mahadevan, G. (2011). A recent technique to detect sink hole attacks in WSN. International Conference Program Bangkok Thailand, (ISEM2011).

  11. Singh, T., Kumar, V., Saxena, K., & Saxena, A. (2011). Evaluation of security conditions of protocols for data routing in wireless sensors networks. International Journal of Soft Computing and Engineering (IJSCE) 1(1), ISSN: 2231-2307.

  12. Son, Ju-Hyung, Lee, Jun-Sik, & Seo, Seung-Woo. (2010). Topological key hierarchy for energy-efficient group key management in wireless sensor networks. Springer, Wireless Personal Communications, 52(2), 359–382. doi:10.1007/s11277-008-9653-4.

    Article  Google Scholar 

  13. Mansour, I., Chalhoub, G., & Misson, M. (2011). Energy-efficient security protocol for wireless sensor networks using frequency hopping and permutation ciphering. Proceedings of the 1st international conference on pervasive and embedded computing and communication systems (pp. 277–282).

  14. Chong, C. Y., & Kumar, S. P. (2003). Sensor networks: Evolution, opportunities, and challenges. Proceedings of IEEE Magazine, (pp. 1247–1256).

  15. Kalita, H. K., & Kar, A. (2009). Wireless sensor network security analysis. International Journal of Next-Generation Networks IJNGN, 1(1), 1–10.

    Google Scholar 

  16. Tague, P., Li, M., & Poovendran, R. (2009). Mitigation of control channel jamming under node capture attacks. IEEE Transactions on Mobile Computing, 8(9), 1221–1234.

    Article  Google Scholar 

  17. Xiaojiang, Du, Xiao, Yang, Ci, Song, Guizani, Mohsen, & Chen, Hsiao-Hwa. (2009). A routing-driven key management scheme for heterogeneous sensor networks. IEEE Transactions on Wireless Communications, 8(3), 1223–1229.

    Article  Google Scholar 

  18. Gnana Kousalya, C., & Anandha Mala, G. S. (2011). An energy-efficient and resilient traffic-aware key management scheme for wireless sensor networks. European Journal of Scientific Research ISSN 1450-216X, 50(2), 246–262.

    Google Scholar 

  19. Sahingoz, O. K. (2013). Large scale wireless sensor networks with multi-level dynamic key management scheme. Journal of Systems Architecture, 59(9), 801–807.

    Article  Google Scholar 

  20. Li, Mo, et al. (2013). A survey on topology control in wireless sensor networks: Taxonomy, comparative study, and open issues. Proceedings of the IEEE, 101(12), 2538–2557.

    Article  Google Scholar 

  21. Chilamkurti, N., et al. (2009). Cross-layer support for energy efficient routing in wireless sensor networks. Journal of Sensors.

  22. Yao, Y., et al. (2013). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for wireless sensor networks. MASS 182–190.

  23. Yao, Y., et al. (2015). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for heterogeneous wireless sensor networks. IEEE/ACM Transactions on Networking, 23(3), 810–823.

    Article  Google Scholar 

  24. Han, K., et al. (2013). Algorithm design for data communications in duty-cycled wireless sensor networks: A survey. IEEE Communications Magazine, 51(7), 107–113.

    Article  Google Scholar 

  25. Sheng, Z., et al. (2013). A survey on the ietf protocol suite for the internet of things: Standards, challenges, and opportunities. Wireless Communications, IEEE, 20(6), 91–98.

    Article  Google Scholar 

  26. Xiao, Yang, et al. (2012). Tight performance bounds of multihop fair access for MAC protocols in wireless sensor networks and underwater sensor networks. IEEE Transactions on Mobile Computing, 11(10), 1538–1554.

    Article  Google Scholar 

  27. Zeng, Yuanyuan, et al. (2013). Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Networks, 19(2), 161–173.

    Article  MathSciNet  Google Scholar 

  28. Xiang, L., et al. (2011). Compressed data aggregation for energy efficient wireless sensor networks. In 8th annual IEEE communications society conference on Sensor, mesh and ad hoc communications and networks (SECON), 2011, pp. 46–54.

  29. Sengupta, S., et al. (2012). An evolutionary multiobjective sleep-scheduling scheme for differentiated coverage in wireless sensor networks. IEEE Transactions on Systems, Man, and Cybernetics, Part C, 42(6), 1093–1102.

    Article  Google Scholar 

  30. Wei, Guiyi, et al. (2011). Prediction-based data aggregation in wireless sensor networks: Combining grey model and Kalman filter. Computer Communications, 34(6), 793–802.

    Article  Google Scholar 

  31. Liu, X.-Y., et al. (2015). CDC: Compressive data collection for wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 26(8), 2188–2197.

    Article  Google Scholar 

  32. Song, Y., et al. (2014). A biology-based algorithm to minimal exposure problem of wireless sensor networks. IEEE Transactions on Network and Service Management, 11(3), 417–430.

    Article  Google Scholar 

  33. Liu, Y., et al. (2010). Multi-layer clustering routing algorithm for wireless vehicular sensor networks. IET Communications, 4(7), 810–816.

    Article  Google Scholar 

  34. Xu, X., et al. (2015). Hierarchical data aggregation using compressive sensing (HDACS) in WSNs. ACM Transactions on Sensor Networks (TOSN), 11(3), 45.

    Article  Google Scholar 

  35. Bhuiyan, M. Z. A., et al. (2015). Local area prediction-based mobile target tracking in wireless sensor networks. IEEE Transactions on Computers, 64(7), 1968–1982.

    Article  MathSciNet  MATH  Google Scholar 

  36. Busch, Costas, et al. (2012). Approximating congestion + dilation in networks via “quality of routing” games. IEEE Transactions on Computers, 61(9), 1270–1283.

    Article  MathSciNet  Google Scholar 

  37. Li, Peng, et al. (2014). Reliable multicast with pipelined network coding using opportunistic feeding and routing. IEEE Transactions on Parallel and Distributed Systems, 25(12), 3264–3273.

    Article  Google Scholar 

  38. Dvir, A., et al. (2011). Backpressure-based routing protocol for DTNs. ACM SIGCOMM Computer Communication Review, 41(4), 405–406.

    MathSciNet  Google Scholar 

  39. Vasilakos, A., et al. (2012). Delay tolerant networks: Protocols and applications. Boca Raton: CRC Press.

    Google Scholar 

  40. Liu, L., et al. (2015). Physarum optimization: A biology-inspired algorithm for the Steiner tree problem in networks. IEEE Transactions on Computers, 64(3), 819–832.

    MathSciNet  MATH  Google Scholar 

  41. Meng, T., et al. (2016). Spatial reusability-aware routing in multi-hop wireless networks. IEEE Transactions on Computers. doi:10.1109/TC.2015.2417543.

    MathSciNet  MATH  Google Scholar 

  42. Zhou, Liang, et al. (2010). Context-aware middleware for multimedia services in heterogeneous networks. IEEE Intelligent Systems, 25(2), 40–47.

    Article  Google Scholar 

  43. Acampora, G., et al. (2010). Interoperable and adaptive fuzzy services for ambient intelligence applications. ACM Transactions on Autonomous and Adaptive Systems (TAAS), 5(2), 8.

    Google Scholar 

  44. Fadlullah, Z. M., et al. (2010). DTRAB: Combating against attacks on encrypted protocols through traffic-feature analysis. IEEE/ACM Transactions on Networking, 18(4), 1234–1247.

    Article  Google Scholar 

  45. Jing, Qi, et al. (2014). Security of the internet of things: Perspectives and challenges. Wireless Networks, 20(8), 2481–2501.

    Article  Google Scholar 

  46. Yan, Zheng, et al. (2014). A survey on trust management for internet of things. Journal of Network and Computer Applications, 42, 120–134.

    Article  Google Scholar 

  47. Zhang, Xin Ming, et al. (2015). Interference-based topology control algorithm for delay-constrained mobile Ad hoc networks. IEEE Transactions on Mobile Computing, 14(4), 742–754.

    Article  Google Scholar 

  48. Vasilakos, Athanasios V., et al. (2015). Information centric network: Research challenges and opportunities. Journal of Network and Computer Applications, 52, 1–10.

    Article  Google Scholar 

  49. Yang, M., et al. (2015). Software-defined and virtualized future mobile and wireless networks: A survey. ACM/Springer Mobile Networks and Applications, 20(1), 4–18.

    Article  Google Scholar 

  50. Wei, L., et al. (2010). SecCloud: Bridging secure storage and computation in cloud. ICDCS Workshops, pp. 52–61.

  51. Xiong, Naixue, et al. (2009). Comparative analysis of quality of service and memory usage for adaptive failure detectors in healthcare systems. IEEE Journal on Selected Areas in Communications, 27(4), 495–509.

    Article  Google Scholar 

  52. He, Daojing, et al. (2012). ReTrust: Attack-resistant and lightweight trust management for medical sensor networks. IEEE Transactions on Information Technology in Biomedicine, 16(4), 623–632.

    Article  MathSciNet  Google Scholar 

  53. He, Daojing, et al. (2012). A distributed trust evaluation model and its application scenarios for medical sensor networks. IEEE Transactions on Information Technology in Biomedicine, 16(6), 1164–1175.

    Article  MathSciNet  Google Scholar 

  54. Zhang, Zhaoyang, et al. (2012). ECG-cryptography and authentication in body area networks. IEEE Transactions on Information Technology in Biomedicine, 16(6), 1070–1078.

    Article  MathSciNet  Google Scholar 

  55. Liu, J., et al. (2016). Leveraging software-defined networking for security policy enforcement. Information Sciences, 327, 288–299.

    Article  Google Scholar 

  56. Zhou, Jun, et al. (2015). 4S: A secure and privacy-preserving key management scheme for cloud-assisted wireless body area network in m-healthcare social networks. Information Sciences, 314, 255–276.

    Article  Google Scholar 

  57. Zhou, J., et al. (2013). Securing m-healthcare social networks: Challenges, countermeasures and future directions. IEEE Wireless Communications, 20(4), 12–21.

    Article  Google Scholar 

  58. Yang, Haomin, et al. (2014). Provably secure three-party authenticated key agreement protocol using smart cards. Computer Networks, 58, 29–38.

    Article  Google Scholar 

  59. Liang, H., & Wang, C. (2011). An energy efficient dynamic key management scheme based on polynomial and cluster in wireless sensor networks. Journal of Convergence Information Technology, 6(5), 321.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gnana Kousalya Chella Thevar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chella Thevar, G., Rohini, G. Energy efficient geographical key management scheme for authentication in mobile wireless sensor networks. Wireless Netw 23, 1479–1489 (2017). https://doi.org/10.1007/s11276-016-1228-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-016-1228-9

Keywords

Navigation