Skip to main content

Advertisement

Log in

An efficient cooperative hybrid routing protocol for hybrid wireless mesh networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Hybrid wireless mesh networks are the most generic types of wireless mesh networks. Unlike static mesh routers, which have multiple radio interfaces and almost no energy constraint, mobile mesh clients are usually equipped with a single radio interface and have energy limitations. A cooperative hybrid routing protocol (CHRP) combining advantages of proactive and reactive routing protocols by letting them work cooperatively is proposed in this paper, which can adapt to features of both routers and clients. In CHRP, in order to make a proper route selection, channel condition, interference and constrained energy of clients are considered in the node-aware routing metric. Besides, a cross-layer approach is used in CHRP. Both gateway and client oriented data flows are considered comprehensively. The simulation results using ns-3 show the advantage of the proposed CHRP in terms of average packet loss rate, average latency, average network throughput, average energy consumption of clients and the minimum residual energy of clients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Akyildiz, I. F., Wang, X., & Wang, W. (2005). Wireless mesh networks: A survey. Computer Networks, 47(4), 445–487.

    Article  MATH  Google Scholar 

  2. Le, A. N., Kum, D. W., & Cho, Y. Z. (2009). An efficient hybrid routing approach for hybrid wireless mesh networks. Advances in Information Security and Assurance, 5576, 532–542.

    Article  Google Scholar 

  3. Youssef, M., Ibrahim, M., Abdelatif, M., Chen, L., & Vasilakos, A. V. (2014). Routing metrics of cognitive radio networks: A survey. IEEE Communications Surveys & Tutorials, 16(1), 92–109.

    Article  Google Scholar 

  4. Woungang, I., Dhurandher, S. K., Anpalagan, A., & Vasilakos, A. V. (Eds.). (2013). Routing in opportunistic networks. Springer: New York.

    MATH  Google Scholar 

  5. Vasilakos, A., Saltouros, M. P., Atlassis, A. F., & Pedrycz, W. (2003). Optimizing QoS routing in hierarchical ATM networks using computational intelligence techniques. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 33(3), 297–312.

    Article  Google Scholar 

  6. Busch, C., Kannan, R., & Vasilakos, A. V. (2012). Approximating congestion+ dilation in networks via quality of routing games. IEEE Transactions on Computers, 61(9), 1270–1283.

    Article  MathSciNet  Google Scholar 

  7. Vasilakos, A. V., Zhang, Y., & Spyropoulos, T. (Eds.). (2011). Delay tolerant networks: Protocols and applications. Boca Raton: CRC Press.

    Google Scholar 

  8. Spyropoulos, T., Rais, R. N. B., Turletti, T., Obraczka, K., & Vasilakos, A. (2010). Routing for disruption tolerant networks: Taxonomy and design. Wireless Networks, 16(8), 2349–2370.

    Article  Google Scholar 

  9. Dvir, A., & Vasilakos, A. V. (2011). Backpressure-based routing protocol for DTNs. ACM SIGCOMM Computer Communication Review, 41(4), 405–406.

    Google Scholar 

  10. Li, P., Guo, S., Yu, S., & Vasilakos, A. V. (2012). CodePipe: An opportunistic feeding and routing protocol for reliable multicast with pipelined network coding. In INFOCOM, 2012 proceedings IEEE (pp. 100–108). IEEE.

  11. Li, P., Guo, S., Yu, S., & Vasilakos, A. V. (2014). Reliable multicast with pipelined network coding using opportunistic feeding and routing. IEEE Transactions on Parallel and Distributed Systems, 25(12), 3264–3273.

    Article  Google Scholar 

  12. Yen, Y. S., Chao, H. C., Chang, R. S., & Vasilakos, A. (2011). Flooding-limited and multi-constrained QoS multicast routing based on the genetic algorithm for MANETs. Mathematical and Computer Modelling, 53(11), 2238–2250.

    Article  Google Scholar 

  13. Meng, T., Wu, F., Yang, Z., Chen, G., & Vasilakos, A. V. (2016). Spatial reusability-aware routing in multi-hop wireless networks. IEEE Transactions on Computers, 65(1), 244–255.

    Article  MathSciNet  MATH  Google Scholar 

  14. Yao, Y., Cao, Q., & Vasilakos, A. V. (2015). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for heterogeneous wireless sensor networks. IEEE/ACM Transactions on Networking, 23(3), 810–823.

    Article  Google Scholar 

  15. Marwaha, S., Srinivasan, D., Tham, C. K., & Vasilakos, A. (2004). Evolutionary fuzzy multi-objective routing for wireless mobile ad hoc networks. Evolutionary Computation, 2, 1964–1971.

    Google Scholar 

  16. Liu, Y., Xiong, N., Zhao, Y., Vasilakos, A. V., Gao, J., & Jia, Y. (2010). Multi-layer clustering routing algorithm for wireless vehicular sensor networks. IET Communications, 4(7), 810–816.

    Article  Google Scholar 

  17. Kaur, R., & Rai, M. K. (2012). A novel review on routing protocols in manets. Undergraduate Academic Research Journal (UARJ), 2278, 1129–1134.

    Google Scholar 

  18. Khan, S., Pirzada, A. A., & Portmann, M. (2007). Performance comparison of reactive routing protocols for hybrid wireless mesh networks. In 2nd international conference on wireless broadband and ultra wideband communications (pp. 78–83).

  19. Perkins, C., Belding-Royer, E., & Das, S. (2003). Ad hoc on-demand distance vector (aodv) routing. RFC 3561.

  20. ns-3. (2015). https://www.nsnam.org/. Accessed November 26, 2015.

  21. Pirzada, A. A., Portmann, M., Wishart, R., & Indulska, J. (2009). SafeMesh: A wireless mesh network routing protocol for incident area communications. Pervasive and Mobile Computing, 5(2), 201–221.

    Article  Google Scholar 

  22. Khan, S., & Loo, J. (2012). Cross layer secure and resource-aware on-demand routing protocol for hybrid wireless mesh networks. Wireless Personal Communications, 62(1), 201–214.

    Article  Google Scholar 

  23. Pirzada, A. A., Wishart, R., & Portmann, M. (2007). Congestion aware routing in hybrid wireless mesh networks. In 15th IEEE international conference on networks (pp. 513–518).

  24. Shi, W., Liu, D., Wang, J., & Li, Q. (2015). Cross-layer aware routing protocol for hybrid wireless mesh networks. Journal of Communications, 10(7), 480–489.

    Google Scholar 

  25. Zhao, L., Yu, Z., Niu, J., Zhang, H., & Ding, W. (2010). A hybrid routing protocol for hierarchy wireless mesh networks. In 6th international conference on wireless communications networking and mobile computing (WiCOM) (pp. 1–4).

  26. Song, W., & Fang, X. (2007). Cross-layer routing with link quality and stability-aware in ITS hybrid wireless mesh networks. In 6th international conference on advanced language processing and web information technology (pp. 304–308).

  27. Pirzada, A. A., Portmann, M., & Indulska, J. (2006). Performance comparison of multi-path aodv and dsr protocols in hybrid mesh networks. In 14th IEEE international conference in networks (pp. 1–6).

  28. Cho, J., Kim, E., & Song, J. (2008). A study on enhanced multipath routing protocol in hybrid wireless mesh network. In Novel algorithms and techniques in telecommunications. Automation and industrial electronics (pp. 395–400).

  29. Pirzada, A. A., Portmann, M., & Indulska, J. (2009). Aodv-hm: A hybrid mesh ad-hoc on-demand distance vector routing protocol. Journal of Research and Practice in Information Technology, 41(1), 65–84.

    Google Scholar 

  30. Pirzada, A. A., Wishart, R., Portmann, M., & Indulska, J. (2009). ALARM: An adaptive load-aware routing metric for hybrid wireless mesh networks. In Proceedings of the thirty-second Australasian conference on computer (Vol. 91, pp. 37–46).

  31. Pirzada, A. A., & Portmann, M. (2007). Establishing high capacity routes in wireless mesh networks. In Asia-Pacific conference in communications (pp. 285–288).

  32. Pirzada, A. A., Wishart, R., & Portmann, M. (2007). Multi-linked AODV routing protocol for wireless mesh networks. In Global telecommunications conference (pp. 4925–4930).

  33. Draves, R., Padhye, J., & Zill, B. (2004). Routing in multi-radio, multi-hop wireless mesh networks. In Proceedings of the 10th annual international conference on mobile computing and networking (pp. 114–128).

  34. Ali, R. F., Kiani, A. K., & Pirzada, A. A. (2014). Load dependent dynamic path selection in multi-radio hybrid wireless mesh networks. In Wireless communications and networking conference (WCNC) (pp. 2020–2025).

  35. Kiani, A. K., Ali, R. F., & Rashid, U. (2015). Energy-load aware routing metric for hybrid wireless mesh networks. In Vehicular technology conference (VTC Spring) (pp. 1–5).

  36. Triviño, A., Ariza, A., Casilari, E., & Cano, J. C. (2013). Cooperative layer-2 based routing approach for hybrid wireless mesh networks. China Communications, 10(8), 88–99.

    Article  Google Scholar 

  37. Borges, V. C., Curado, M., & Monteiro, E. (2011). Cross-layer routing metrics for mesh networks: Current status and research directions. Computer Communications, 34(6), 681–703.

    Article  Google Scholar 

  38. Hu, J., Min, G., & Woodward, M. E. (2011). Performance analysis of the txop burst transmission scheme in single-hop ad hoc networks with unbalanced stations. Computer Communications, 34(13), 1593–1603.

    Article  Google Scholar 

  39. Gupta, N., & Das, S. R. (2002). Energy-aware on-demand routing for mobile ad hoc networks. Distributed Computing, 2571, 164–173.

    Article  MATH  Google Scholar 

  40. Zhang, X. M., Zhang, Y., Yan, F., & Vasilakos, A. V. (2015). Interference-based topology control algorithm for delay-constrained mobile ad hoc networks. IEEE Transactions on Mobile Computing, 14(4), 742–754.

    Article  Google Scholar 

  41. Gupta, P., & Kumar, P. R. (2000). The capacity of wireless networks. IEEE Transactions on Information Theory, 46(2), 388–404.

    Article  MathSciNet  MATH  Google Scholar 

  42. Mozumder, A. H., Acharjee, T., & Roy, S. (2014). Scalability performance analysis of BATMAN and HWMP protocols in wireless mesh networks using NS-3. In International conference in green computing communication and electrical engineering (ICGCCEE) (pp. 1–5).

  43. Zeng, Y., Xiang, K., Li, D., & Vasilakos, A. V. (2013). Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Networks, 19(2), 161–173.

    Article  Google Scholar 

  44. Wang, X., Vasilakos, A. V., Chen, M., Liu, Y., & Kwon, T. T. (2012). A survey of green mobile networks: Opportunities and challenges. Mobile Networks and Applications, 17(1), 4–20.

    Article  Google Scholar 

  45. Duarte, P. B., Fadlullah, Z. M., Vasilakos, A. V., & Kato, N. (2012). On the partially overlapped channel assignment on wireless mesh network backbone: A game theoretic approach. IEEE Journal on Selected Areas in Communications, 30(1), 119–127.

    Article  Google Scholar 

  46. Cheng, H., Xiong, N., Vasilakos, A. V., Yang, L. T., Chen, G., & Zhuang, X. (2012). Nodes organization for channel assignment with topology preservation in multi-radio wireless mesh networks. Ad Hoc Networks, 10(5), 760–773.

    Article  Google Scholar 

  47. Vasilakos, A. V., Li, Z., Simon, G., & You, W. (2015). Information centric network: Research challenges and opportunities. Journal of Network and Computer Applications, 52, 1–10.

    Article  Google Scholar 

  48. Attar, A., Tang, H., Vasilakos, A. V., Yu, F. R., & Leung, V. (2012). A survey of security challenges in cognitive radio networks: Solutions and future research directions. Proceedings of the IEEE, 100(12), 3172–3186.

    Article  Google Scholar 

Download references

Acknowledgments

The work of this paper is supported by the National Natural Science Foundation of China (No. 61373124).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenxiao Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chai, Y., Shi, W., Shi, T. et al. An efficient cooperative hybrid routing protocol for hybrid wireless mesh networks. Wireless Netw 23, 1387–1399 (2017). https://doi.org/10.1007/s11276-016-1229-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-016-1229-8

Keywords

Navigation