Skip to main content

Advertisement

Log in

Optimal simultaneous wireless information and energy transfer in OFDMA decode-and-forward relay networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, we consider simultaneous wireless information and energy transfer in an orthogonal-frequency-division-multiple-access decode-and-forward relay network, in which an energy-constrained relay node harvests energy from a source node and uses the harvested energy to forward information to multiple destination nodes. Our objective is to maximize the end-to-end sum rate by resource allocation, subject to transmit power constraint at the source and energy-harvesting (EH) constraint at the relay. A non-convex and mixed-integer programming (MIP) problem is formulated to optimize time-switching (TS) ratios of EH and information decoding at the relay, TS ratio of information transmission from relay to destinations, subcarrier allocation as well as power allocation (PA) over all subcarriers at source and relay. We propose to decouple this problem into a convex problem and an MIP problem in fractional form. To solve the MIP problem, we transform it into an equivalent optimization problem in subtractive form which has a tractable solution. As a result, we propose a novel scheme to achieve jointly optimal TS ratios, subcarrier allocation and PA. Simulation results verify the optimality of our proposed resource allocation scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yang, X. X., Jiang, C., Elsherbeni, A. Z., Yang, F., & Wang, Y. Q. (2013). A novel compact printed rectenna for data communication systems. IEEE Transactions on Antennas Propagation, 61, 2532–2539.

    Article  Google Scholar 

  2. Monti, G., Corchia, L., & Tarricone, L. (2013). UHF wearable rectenna on textile materials. IEEE Transactions on Antennas Propagation, 61, 3869–3873.

    Article  Google Scholar 

  3. Varshney, L. R. (2008). Transporting information and energy simultaneously. In IEEE international symposium on information theory (ISIT) (pp.1612–1616).

  4. Zhou, X., Zhang, R., & Ho, C. K. (2013). Wireless information and power transfer: Architecture design and rate-energy tradeoff. IEEE Transactions on Communications, 61(11), 4754–4767.

    Article  Google Scholar 

  5. Zhang, R., & Ho, C. K. (2013). MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Transactions on Wireless Communications, 12(5), 1989–2001.

    Article  Google Scholar 

  6. Zhou, X., Zhang, R., & Ho, C. K. (2013). Wireless information and power transfer: Architecture design and rate-energy tradeoff. IEEE Transactions on Wireless Communications, 61(11), 4754–4767.

    Article  Google Scholar 

  7. Liu, L., Zhang, R., & Chua, K. C. (2013). Wireless information transfer with opportunistic EH. IEEE Transactions on Wireless Communications, 12(1), 4440–4453.

    Article  Google Scholar 

  8. Huang, K., & Larsson, E. (2013). Simultaneous information and power transfer for broadband wireless systems. IEEE Transactions on Signal Processing, 61(23), 5972–5986.

    Article  MathSciNet  Google Scholar 

  9. Nasir, A. A., Zhou, X., Durrani, S., & Kennedy, R. A. (2013). Relaying protocols for wireless energy harvesting and information processing. IEEE Transactions on Wireless Communications, 12(7), 3622–3636.

    Article  Google Scholar 

  10. Nasir, A. A., Zhou, X., Durrani, S., & Kennedy, R. A. (2013). Wireless-powered relays in cooperative communications: Time-switching relaying protocols and throughput analysis. IEEE Transactions on Communications, 63(5), 1607–1622.

    Article  Google Scholar 

  11. Ding, Z., & Poor, H. V. (2013). Cooperative energy harvesting networks with spatially random users. IEEE Signal Processing Letters, 20(12), 1211–1214.

    Article  Google Scholar 

  12. Ding, Z., Krikidis, I., Sharif, B., & Poor, H. V. (2014). Wireless information and power transfer in cooperative networks with spatially random relays. IEEE Transactions on Wireless Communications, 13(8), 4440–4453.

    Article  Google Scholar 

  13. Panagiotis, D., Georgia, D., Koralia, N., George, K., & Bayan, S. (2015). Throughput maximization in multicarrier wireless powered relaying networks. IEEE Wireless Communication Letters, 4(4), 385–388.

    Article  Google Scholar 

  14. Xiong, K., Fan, P., Zhang, C., & Letaief, K. B. (2015). Wireless information and energy transfer for two-hop non-regenerative MIMO-OFDM relay networks. IEEE Journal on Selected Areas in Communications, 33(8), 1595–1611.

    Google Scholar 

  15. Huang, G. F., Zhang, Q., & Qin, J. Y. (2015). Joint time switching and power allocation for multicarrier decode-and-forward relay networks with SWIPT. IEEE Signal Processing Letters, 22(12), 2284–2288.

    Article  Google Scholar 

  16. Krikidis, I., Timotheou, S., & Sasaki, S. (2012). RF energy transfer for cooperative networks: Data relaying or energy harvesting? IEEE Communication Letters, 16(11), 1772–1775.

    Article  Google Scholar 

  17. Zhou, N., Zhu, X., Gao, J., & Huang, Y. (2010). Optimal asymmetric resource allocation with limited feedback for OFDM based relay systems. IEEE Transactions on Wireless Communications, 9(2), 4440–4453.

    Google Scholar 

  18. Zhou, N., Zhu, X., & Huang, Y. (2011). Optimal asymmetric resource allocation and analysis for OFDM-based multidestination relay systems in the downlink. IEEE Transactions on Vehicular Technology, 60(3), 1307–1312.

    Article  Google Scholar 

  19. Hajiaghayi, M., Dong, M., & Liang, B. (2012). Jointly optimal channel and power assignment for dual-hop multi-channel multi-user relaying. IEEE Journal on Selected Areas in Communications, 30(9), 1806–1814.

    Article  Google Scholar 

  20. Hajiaghayi, M., Dong, M., & Liang, B. (2011). Optimal channel assignment and power allocation for dual-hop multi-channel multi-user relaying. In IEEE international conference on computer communications (INFORCOM) (pp. 76–80).

  21. Goldsmith, A. (2005). Wireless communications. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  22. Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  23. Channappayya, S. S., Bovik, A. C., Caramanis, C., & Heath, R. W. (2008). Design of linear equalizers optimized for the structural similarity index. IEEE Transactions on Image Processing, 17(6), 857–872.

    Article  MathSciNet  Google Scholar 

  24. Corless, R. M., Gonnet, G. H., Hare, D. E. G., Jeffrey, D. J., & Knuth, D. E. (1996). On the Lambert W function. Advances in Computational Mathematics, 5(1), 329–359.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grant 61472458, Grant 61202498, and Grant 61173148, in part by Guangdong Natural Science Foundation under Grant 2014A030310349, in part by Guangdong Science & Technology Project under Grant 2013B010402018 and Grant 2012A010800009, in part by Guangzhou Science & Technology Fund under Grant 2014J4100142, Grant 2014J4100233 and Grant 2014A030310349, in part by Guangzhou Education Bureau Science & Technology Project under Grant 2012A082 and in part by Guangzhou Colleges and Universities Project under Grant 1201421329.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaofei Huang.

Appendices

Appendix 1

Proof of Proposition 2

By introducing a slack variable \(\theta \), we firstly rewrite problem (20) equivalently as

$$\begin{aligned}&\min : \; \theta \nonumber \\&\quad \mathrm{s.t.} \quad \nonumber \\&\quad \left[ \begin{array}{cc} \max \limits _{\mathbf {P}^{\mathrm{R}},\Phi } &{}\frac{G\sum _{k=1}^K \sum _{n=1}^N\phi _{k,n}^{\mathrm{RD}} \log \left( 1+P^{\mathrm{R}}_{k,n} \gamma ^{\mathrm{RD}}_{k,n}\right) }{\sum _{k=1}^K\sum _{n=1}^{N}P^{\mathrm{R}}_{k,n}+G}\le \theta \\ \quad \mathrm{s.t.} &{}P^{\mathrm{R}}_{k,n}\ge 0, \forall k\in {\mathcal {K}},n\in {\mathcal {N}}, \\ &{}\sum _{k=1}^K \phi _{k,n}^{\mathrm{RD}} = 1, \; \forall n \in {\mathcal {N}}, \\ &{}\phi _{k,n}^{\mathrm{RD}} \in \{0,1\}, \forall k\in {\mathcal {K}},n\in {\mathcal {N}}. \end{array} \right] \end{aligned}$$
(36)

This holds since minimizing \(\theta \) is the same as finding the least upper bound of the objective function of problem (20), which is equal to the maximum value of objective function [23]. The problem (36) is further recast as [23]

$$\begin{aligned}&\min : \; \theta \nonumber \\&\quad \mathrm{s.t.} \nonumber \\&\quad \left[ \begin{array}{cc} \min \limits _{\mathbf {P}^{\mathrm{R}},\Phi } &{}F\left( \mathbf {P}^{\mathrm{R}},\Phi ,\theta \right) \ge 0 \qquad \qquad \quad \\ \quad \mathrm{s.t.} &{}P^{\mathrm{R}}_{k,n}\ge 0, \forall k\in {\mathcal {K}},n\in {\mathcal {N}}, \\ &{}\sum _{k=1}^K \phi _{k,n}^{\mathrm{RD}} = 1, \; \forall n \in {\mathcal {N}}, \quad \\ &{}\phi _{k,n}^{\mathrm{RD}} \in \{0,1\}, \forall k\in {\mathcal {K}},n\in {\mathcal {N}} \end{array}\right] \end{aligned}$$
(37)

where \(F\left( \mathbf {P}^{\mathrm{R}},\Phi ,\theta \right) \) is defined in (22). This holds since \(\sum _{k=1}^K\sum _{n=1}^{N}P^{\mathrm{R}}_{k,n}+G\) is strictly positive. Then, \(\theta \) is a true upper bound if the problem

$$\begin{aligned} \min \limits _{\mathbf {P}^{\mathrm{R}},\Phi } \;&F\left( \mathbf {P}^{\mathrm{R}},\Phi ,\theta \right) \\ \mathrm{s.t.} \;&P^{\mathrm{R}}_{k,n}\ge 0, \forall k\in {\mathcal {K}}, n\in {\mathcal {N}}, \\&\sum _{k=1}^K \phi _{k,n}^{\mathrm{RD}} = 1, \; \forall n \in {\mathcal {N}}, \\&\phi _{k,n}^{\mathrm{RD}} \in \{0,1\}, \forall k\in {\mathcal {K}},n\in {\mathcal {N}} \end{aligned}$$

has a non-negative optimal value. Specially, if and only if \(\theta =\overline{\theta }\), where \(\overline{\theta }\) is the solution of the equation \(T(\overline{\theta })=0\), in which \(T(\theta )\) is defined in (23), the optimal value of problem (20) is \(\overline{\theta }\), and \(\left( \overline{\mathbf {P}}^{\mathrm{R}}, \overline{\Phi }\right) = \arg \max _{\mathbf {P}^{\mathrm{R}},\Phi } F\left( \mathbf {P}^{\mathrm{R}},\Phi ,\overline{\theta }\right) \) is the optimal solution to problem (20). The proof is completed. □

Appendix 2

Proof of Proposition 3

Introduce a variable

$$ \varphi =\frac{G}{\sum _{k=1}^{K}\sum _{n=1}^{N}P_{k,n}^{\mathrm{R}}+G},$$
(38)

Then \(\varphi \sum _{k=1}^{K} \sum _{n=1}^{N}P_{k,n}^{\mathrm{R}}=(1-\varphi ) G\). Since \(0\le \varphi \le 1\), it follows

$$ P_{k,n}^{\mathrm{R}}\le \sum _{k=1}^{K} \sum _{n=1}^{N}P_{k,n}^{\mathrm{R}} =\frac{1-\varphi }{\varphi }G \le \frac{1+\varphi }{\varphi }G. $$
(39)

In addition, according to (38), the objective function of problem (20) can be rewritten as

$$\hat{R}=\varphi \sum _{k=1}^K \sum _{n=1}^N\phi _{k,n}^{\mathrm{RD}} \log \left( 1+P^{\mathrm{R}}_{k,n} \gamma ^{\mathrm{RD}}_{k,n}\right)$$
(40)

It is obvious that allowing all destinations to receive data information over all subcarriers, which results in \(\phi _{k,n}^{\mathrm{RD}}=1\) for all \(k\in K\) and \(n \in N\), will increase the end-to-end achievable sum rate. Then we have

$$\hat{R}\le \varphi \sum _{k=1}^K\sum _{n=1}^N \log \left( 1+P^{\mathrm{R}}_{k,n} \gamma ^{\mathrm{RD}}_{k,n}\right) \le KN \varphi \log \left( 1+S+S/\varphi \right).$$
(41)

with \(S=G \max _{k,n}\left\{ \gamma ^{\mathrm{RD}}_{k,n}\right\} \). Since \(1+S+S/\varphi \le \left( 1+S\right) \left( 1+1/\varphi \right) \) and \(\varphi \le 1\), we have

$$\begin{aligned} \hat{R}&\le KN \varphi \log \left( 1+S\right) +N \varphi \log \left( 1+1/\varphi \right) \nonumber \\&\le KN\log \left( 1+S\right) +KN \varphi \log \left( 1+1/\varphi \right) . \end{aligned}$$
(42)

It can be verified that \(f(\varphi )=\varphi \log \left( 1+1/\varphi \right) \) is concave. The maximum value of \(f(\varphi )\) is obtained by letting \(df(\varphi )/d\varphi =0\). Thus, we have \(\exp (1/(1+\varphi ))=(1+\varphi )/\varphi \). Using the Lambert \({\mathcal {W}}\) Function [24], the solution to the problem \(\max _{\varphi }f(\varphi )\) is \(\varphi =\vartheta ={\mathcal {W}}\left( -\frac{1}{e}\right) \).□

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, G., Tang, D., Zhao, S. et al. Optimal simultaneous wireless information and energy transfer in OFDMA decode-and-forward relay networks. Wireless Netw 23, 1731–1742 (2017). https://doi.org/10.1007/s11276-016-1249-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-016-1249-4

Keywords

Navigation