Skip to main content

Advertisement

Log in

Potential position node placement approach via oppositional gravitational search for fulfill coverage and connectivity in target based wireless sensor networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Wireless Sensor Network (WSN) has appeared as a powerful technological platform with tremendous and novel applications. Now-a-days, monitoring and target tracking are the most major application in WSNs. In target based WSN, coverage and connectivity are the two most important issues for definite data forwarding from every target to a remote base station. An NP entire issue is to find least number of potential or possible locations to set sensor nodes gratifying both coverage and connectivity from a given a group of target points. In this article, we propose an Oppositional Gravitational Search algorithm (OGSA) based approach to solve this problem. This approach helps that the sensor nodes are prone to failure, the proposed system provides l-coverage to all targets and n-connectivity to each sensor node. This OGSA based system is presented with agent representation, derivation of efficient fitness function along with the usual Gravitational Search algorithm operators. The approach is simulated broadly with various scenarios of Wireless Sensor Network. The experimentation results are compared with some relevant existing algorithms to demonstrate the efficiency of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tizhoosh, H. R. (2005). Opposition-based learning: A new scheme for machine intelligence. In: Proceedings of international conference comput intel modeling control and autom, Vol. 1, pp. 695–701.

  2. Rashedi, E., Nezamabadi-Pour, H., & Saeid, S. (2009). GSA: A gravitational search algorithm. Information Sciences, 179, 2232–2248.

    Article  MATH  Google Scholar 

  3. Shi, K., Chen, H., & Lin, Y. (2014). Probabilistic coverage based sensor scheduling for target tracking sensor networks. Information Sciences, 292, 95–110.

    Article  Google Scholar 

  4. Victorie, T. A. A., & Jeyakumar, A. E. (2004). Hybrid PSO-SQP for economic dispatch with valve-point effect. Electric Power Systems Research, 71, 51–59.

    Article  Google Scholar 

  5. Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.

    Article  Google Scholar 

  6. Azharuddin, M., Kuila, P., & Jana, P. K. (2015). Energy efficient fault tolerant clustering and routing algorithms for wireless sensor networks. Computers & Electrical Engineering, 41, 177–190.

    Article  Google Scholar 

  7. Rebai, M., Leberre, M., Snoussi, H., Hnaien, F., & Khoukhi, L. (2015). Sensor deployment optimization methods to achieve both coverage and connectivity in wireless sensor networks. Computers & Operations Research, 59, 11–21.

    Article  MathSciNet  MATH  Google Scholar 

  8. Ke, W.-C., Liu, B.-H., & Tsai, M.-J. (2007). Constructing a wireless sensor network to fully cover critical grids by deploying minimum sensors on grid points is NP-complete. IEEE Transactions on Computers, 56(5), 710–715.

    Article  MathSciNet  Google Scholar 

  9. Liu, L., Hu, B., & Li, L. (2010). Energy conservation algorithms for maintaining coverage and connectivity in wireless sensor networks. IET Communications, 4(7), 786–800.

    Article  MathSciNet  Google Scholar 

  10. Gupta, S. K., Kuila, P., Jana, P. K. (2013) GAR: An energy efficient GA-based routing for wireless sensor networks. In: International conference on distributed computing and internet technology 2013. In: LNCS, 7753. New York: Springer, pp. 267–77.

  11. Sengupta, S., Das, S., Nasir, M., & Panigrahi, B. K. (2013). Multi-objective node deployment in WSNS: In search of an optimal trade-off among coverage, lifetime, energy consumption, and connectivity. Engineering Applications of Artificial Intelligence, 26(1), 405–416.

    Article  Google Scholar 

  12. Kuila, P., Gupta, S. K., & Jana, P. K. (2013). A novel evolutionary approach for load balanced clustering problem for wireless sensor networks. Swarm and Evolutionary Computation, 12, 48–56.

    Article  Google Scholar 

  13. Kuila, P., & Jana, P. K. (2014). Energy efficient clustering and routing algorithms for wireless sensor networks: Particle swarm optimization approach. Engineering Applications of Artificial Intelligence, 33, 127–140.

    Article  Google Scholar 

  14. Kuila, P., & Jana, P. K. (2014). A novel differential evolution based clustering algorithm for wireless sensor networks. Applied Soft Computing, 25, 414–425.

    Article  Google Scholar 

  15. Younis, M., & Akkaya, K. (2008). Strategies and techniques for node placement in wireless sensor networks: A survey. Ad Hoc Networks, 6(4), 621–655.

    Article  Google Scholar 

  16. Lanza-Gutierrez, J. M., & Gomez-Pulido, J. A. (2015). Assuming multiobjective metaheuristics to solve a three-objective optimisation problem for relay node deployment in wireless sensor networks. Applied Soft Computing, 30, 675–687.

    Article  Google Scholar 

  17. Cardei, M., & Du, D.-Z. (2005). Improving wireless sensor network lifetime through power aware organization. Wireless Networks, 11(3), 333–340.

    Article  Google Scholar 

  18. Konstantinidis, A., & Yang, K. (2011). Multi-objective k-connected deployment and power assignment in WSNS using a problem-specific constrained evolutionary algorithm based on decomposition. Computer Communications, 34(1), 83–98.

    Article  Google Scholar 

  19. Berre, M. L., Hnaien, F., Snoussi, H. (2011). Multi-objective optimization in wireless sensors networks. In: 2011 International conference on microelectronics (ICM). IEEE; 2011. pp 1–4.

  20. Yoon, Y., & Kim, Y.-H. (2013). An efficient genetic algorithm for maximum coverage deployment in wireless sensor networks. IEEE Transactions on Cybernetics, 43(5), 1473–1483.

    Article  Google Scholar 

  21. Mini, S., Udgata, S. K., & Sabat, S. L. (2012). M-connected coverage problem in wireless sensor networks. ISRN Sensor Network, 2012, 1–9.

    Article  Google Scholar 

  22. Misra, S., Majd, N. E., Huang, H. (2011). Constrained relay node placement in energy harvesting wireless sensor networks. In: 2011 IEEE 8th international conference on mobile adhoc and sensor systems (MASS). pp. 25–34.

  23. Bari, A., Jaekel, A., Jiang, J., & Xu, Y. (2012). Design of fault tolerant wireless sensor networks satisfying survivability and lifetime requirements. Computer Communications, 35(3), 320–333.

    Article  Google Scholar 

  24. Gupta, S. K., Kuila, P., & Jana, P. K. (2015). Genetic algorithm for k-connected relay node placement in wireless sensor networks. In: Proceedings of the second international conference on computer and communication technologies. Springer, pp. 721–729.

  25. Kalaycı, T. E., Yıldırım, K. S., & Ugur, A. (2007). Maximizing coverage in a connected and k-covered wireless sensor network using genetic algorithms. International Journal of Applied Mathematics and Informatics, 1(3), 123–130.

    Google Scholar 

  26. Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.

    Article  Google Scholar 

  27. Yigitel, M. A., Incel, O. D., & Ersoy, C. (2011). QoS-aware MAC protocols for wireless sensor networks: A survey. Computer Networks, 55(8), 1982–2004.

    Article  Google Scholar 

  28. Konak, A., Coit, D. W., & Smith, A. E. (2006). Multi-objective optimization using genetic algorithms: A tutorial. Reliability Engineering & System Safety, 91(9), 992–1007.

    Article  Google Scholar 

  29. Gupta, S. K., Kuila, P., & Jana, P. K. (2015). Genetic algorithm approach for k-coverage and m-connected node placement in target based wireless sensor networks. Computers and Electrical Engineering, 1–13. doi:10.1016/j.compeleceng.2015.11.009.

  30. Li, M., et al. (2013). A survey on topology control in wireless sensor networks: Taxonomy, comparative study, and open issues. Proceedings of the IEEE, 101(12), 2538–2557.

    Article  Google Scholar 

  31. Chilamkurti, N., Zeadally, S., Vasilakos, A., Sharma, V. (2009). Cross-layer support for energy efficient routing in wireless sensor networks. Journal of Sensors, 2009, 9. doi:10.1155/2009/134165.

    Article  Google Scholar 

  32. Yao, Y., et al. (2013). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for wireless sensor networks. MASS 2013, pp. 182–190.

  33. Han, K., et al. (2013). Algorithm design for data communications in duty-cycled wireless sensor networks: A survey. IEEE Communications Magazine, 51(7), 107–113. doi:10.1109/MCOM.2013.6553686.

    Article  Google Scholar 

  34. Sheng, Z., et al. (2013). A survey on the IETF protocol suite for the internet of things: Standards, challenges, and opportunities. Wireless Communications, IEEE, 20(6), 91–98.

    Article  Google Scholar 

  35. Xiao, Y., et al. (2012). Tight performance bounds of multi-hop fair access for MAC protocols in wireless sensor networks and underwater sensor networks. IEEE Transactions on Mobile Computing, 11(10), 1538–1554.

    Article  Google Scholar 

  36. Zeng, Y., et al. (2013). Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Networks, 19(2), 161–173.

    Article  Google Scholar 

  37. Xiang, L., et al. (2011). Compressed data aggregation for energy efficient wireless sensor networks. SECON, 2011, pp. 46–54.

  38. Sengupta, S., et al. (2012). An evolutionary multiobjective sleep-scheduling scheme for differentiated coverage in wireless sensor networks. IEEE Transactions on Systems, Man, and Cybernetics, Part C, 42(6), 1093–1102.

    Article  Google Scholar 

  39. Wei, G., et al. (2011). Prediction-based data aggregation in wireless sensor networks: Combining grey model and Kalman Filter. Computer Communications, 34(6), 793–802.

    Article  MathSciNet  Google Scholar 

  40. Song, Y., et al. (2014). A biology-based algorithm to minimal exposure problem of wireless sensor networks. IEEE Transactions on Network and Service Management, 11(3), 417–430.

    Article  MathSciNet  Google Scholar 

  41. Liu, Y., et al. (2010). Multi-layer clustering routing algorithm for wireless vehicular sensor networks. IET Communications, 4(7), 810–816.

    Article  Google Scholar 

  42. Bhuiyan, M. Z. A., et al. (2015). Local area prediction-based mobile target tracking in wireless sensor networks. IEEE Transactions on Computers, 64(7), 1968–1982.

    Article  MathSciNet  MATH  Google Scholar 

  43. Busch, C., et al. (2012). Approximating congestion + dilation in networks via “quality of routing” games. IEEE Transactions on Computers, 61(9), 1270–1283.

    Article  MathSciNet  Google Scholar 

  44. Liu, L., et al. (2015). Physarum optimization: A biology-inspired algorithm for the steiner tree problem in networks. IEEE Transactions on Computers, 64(3), 819–832.

    MathSciNet  MATH  Google Scholar 

  45. Meng, T., et al. (2016). Spatial reusability-aware routing in multi-hop wireless networks. IEEE Transactions on Computers, IEEE TC, 65, 244–255.

    Article  MathSciNet  MATH  Google Scholar 

  46. Yang, M., et al. (2015). Software-defined and virtualized future mobile and wireless networks: A survey. ACM/Springer Mobile Networks and Applications, 20(1), 4–18.

    Article  Google Scholar 

  47. Zhu, N., & Vasilakos, A. V. (2015) A generic framework for energy evaluation on wireless sensor networks. Wireless Networks, pp. 1–22.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Jehan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jehan, C., Punithavathani, D.S. Potential position node placement approach via oppositional gravitational search for fulfill coverage and connectivity in target based wireless sensor networks. Wireless Netw 23, 1875–1888 (2017). https://doi.org/10.1007/s11276-016-1262-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-016-1262-7

Keywords

Navigation