Abstract
A two-phase beamforming solution for secure communication using untrusted relay nodes is presented. To thwart eavesdropping attempts of participant relay nodes, we deliberately introduce artificial noise in the source message. We observe that for certain scenarios, the source node prefers to allocate its full power to the message signal and, therefore, in the absence of artificial noise, such transmissions will be vulnerable to eavesdropping. Therefore, we provide a signal-to-noise ratio (SNR) based framework for secure communication. We intend to bring down the SNR at each of the untrusted relay nodes below a certain predefined threshold; whereas, using beamforming, we want to boost the SNR at the destination. With this motive, we evaluate the optimal scaling vector for the beamforming phase, which not only nullifies the artificial noise transmitted initially, but also maximizes the SNR at the destination. We discuss both the total and individual power constraint scenarios and provide an analytical optimal solution and an iterative algorithm, respectively.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11276-016-1318-8/MediaObjects/11276_2016_1318_Fig1_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11276-016-1318-8/MediaObjects/11276_2016_1318_Fig2_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11276-016-1318-8/MediaObjects/11276_2016_1318_Fig3_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11276-016-1318-8/MediaObjects/11276_2016_1318_Fig4_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11276-016-1318-8/MediaObjects/11276_2016_1318_Fig5_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11276-016-1318-8/MediaObjects/11276_2016_1318_Fig6_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11276-016-1318-8/MediaObjects/11276_2016_1318_Fig7_HTML.gif)
Similar content being viewed by others
References
Domenic, M., Wang, Y., Zhang, F., Memon, I., Gustav, Y. (2013) Preserving users’ privacy for continuous query services in road networks. In: 6th International Conference on Information Management, Innovation Management and Industrial Engineering (ICIII) (Vol. 1, pp. 352–355).
Memon, I., Hussain, I., Akhtar, R., & Chen, G. (2015). Enhanced privacy and authentication: An efficient and secure anonymous communication for location based service using asymmetric cryptography scheme. Wireless Personal Communications, 84(2), 1487–1508.
Memon, I., Mohammed, M. R., Akhtar, R., Memon, H., Memon, M. H., & Shaikh, R. A. (2014). Design and implementation to authentication over a gsm system using certificate-less public key cryptography (cl-pkc). Wireless Personal Communications, 79(1), 661–686.
Memon, I. (2015). A secure and efficient communication scheme with authenticated key establishment protocol for road networks. Wireless Personal Communications, 85(3), 1167–1191.
Gustav, Y., Wang, Y., Domenic, M., Zhang, F., Memon, I. (2013) Velocity similarity anonymization for continuous query location based services. In: International Conference on Computational Problem-solving (ICCP) (pp. 433–436).
Wyner, A. (1975). The wire-tap channel. Bell Systems Technical Journal, 54(8), 1355–1387.
Leung-Yan-Cheong, S., & Hellman, M. (1978). The Gaussian wire-tap channel. IEEE Transactions on Information Theory, 24(4), 451–456.
Negi, R., Goel, S. (2005). Secret communication using artificial noise. In: Proceeding IEEE 62nd Vehicular Technology Conference (VTC-2005-Fall) (Vol. 3, pp. 1906–1910).
Gopala, P., Lai, L., & El Gamal, H. (2008). On the secrecy capacity of fading channels. IEEE Transactions on Information Theory, 54(10), 4687–4698.
Laneman, J., Tse, D., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.
Zhao, Y., Adve, R., Lim, T.J. (2006). Improving amplify-and-forward relay networks: Optimal power allocation versus selection. In: IEEE International Symposium on Information Theory,(ISIT) (pp. 1234–1238).
Jing, Y., & Jafarkhani, H. (2009). Network beamforming using relays with perfect channel information. IEEE Transactions on Information Theory, 55(6), 2499–2517.
Dong, L., Han, Z., Petropulu, A., Poor, H. (2009). Amplify-and-forward based cooperation for secure wireless communications. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 2613–2616).
Zhang, J., Gursoy, M. (2010). Relay beamforming strategies for physical-layer security. In: 44th Annual Conference on Information Sciences and Systems (CISS) (pp. 1–6).
He, X., Yener, A. (2008). Two-hop secure communication using an untrusted relay: A case for cooperative jamming. In: IEEE Global Telecommunications Conference (GLOBECOM 08) (pp. 1–5).
Zhang, R., Song, L., Han, Z., Jiao, B., Debbah, M. (2010) Physical layer security for two way relay communications with Friendly Jammers. In: IEEE Global Telecommunications Conference (GLOBECOM 2010) (pp. 1–6).
Jeong, C., Kim, I. M., & Kim, D. I. (2012). Joint secure beamforming design at the source and the relay for an amplify-and-forward mimo untrusted relay system. IEEE Transactions on Signal Processing, 60(1), 310–325.
He, X., & Yener, A. (2010). Cooperation with an untrusted relay: A secrecy perspective. IEEE Transactions on Information Theory, 56(8), 3807–3827.
Jorswieck, E., Lin, P. H., Engelmann, S., Wolf, A. (2016) Secure communication in wiretap channels with partial and statistical CSI at the transmitter. In: Physical and data-link security techniques for future communication systems (pp. 17–31). Cham: Springer International Publishing.
Wang, C., & Wang, H. M. (2014). Joint relay selection and artificial jamming power allocation for secure DF relay networks. IEEE International Conference on Communications Workshops (ICC), 2014, 819–824.
Dong, L., Yousefi’zadeh, H., Jafarkhani, H. (2011). Cooperative jamming and power allocation for wireless relay networks in presence of eavesdropper. In: IEEE International Conference on Communications (ICC’11) (pp. 1–5).
Yang, Y., Li, Q., Ma, W. K., Ge, J., & Ching, P. (2013). Cooperative secure beamforming for AF relay networks with multiple eavesdroppers. IEEE Signal Processing Letters, 20(1), 35–38.
Sankararaman, S., Abu-Affash, K., Efrat, A., Eriksson-Bique, S.D., Polishchuk, V., Ramasubramanian, S., Segal, M. (2012). Optimization schemes for protective jamming. In: Proceedings of the thirteenth ACM international symposium on Mobile Ad Hoc Networking and Computing, ACM (pp. 65–74).
Swindlehurst, A. (2009). Fixed SINR solutions for the MIMO wiretap channel. In: IEEE International Conference on Acoustics, Speech and Signal Processing,(ICASSP) (pp. 2437–2440).
Sarma, S., & Kuri, J. (2015). Optimal power allocation for protective jamming in wireless networks: A flow based model. Computer Networks, 81, 258–271.
Wang, H. M., Liu, F., & Yang, M. (2015). Joint cooperative beamforming, jamming, and power allocation to secure AF relay systems. IEEE Transactions on Vehicular Technology, 64(10), 4893–4898.
Yang, Y., Li, Q., Ma, W. K., Ge, J., Lin, M. (2013). Optimal joint cooperative beamforming and artificial noise design for secrecy rate maximization in AF relay networks. In: IEEE 14th Workshop on Signal Processing Advances in Wireless Communications (SPAWC) (pp. 360–364).
Vishwakarma, S., Chockalingam, A. (2013). Amplify-and-forward relay beamforming for secrecy with cooperative jamming and imperfect CSI. In: IEEE International Conference on Communications (ICC) (pp. 3047–3052).
Wang, H. M., Luo, M., Xia, X. G., & Yin, Q. (2013). Joint cooperative beamforming and jamming to secure AF relay systems with individual power constraint and no eavesdropper’s CSI. IEEE Signal Processing Letters, 20(1), 39–42.
Huang, J., Mukherjee, A., & Swindlehurst, A. (2013). Secure communication via an untrusted non-regenerative relay in fading channels. IEEE Transactions on Signal Processing, 61(10), 2536–2550.
Huang, J., Swindlehurst, A. (2013). Joint transmit design and node selection for one-way and two-way untrusted relay channels. In: Asilomar Conference on Signals, Systems and Computers (pp. 1555–1559).
Li, L., Chen, Z., Fang, J. (2014). Robust transmit design for secure AF relay networks based on worst-case optimization. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 2719–2723).
Chu, Z., Cumanan, K., Ding, Z., Johnston, M., & Le Goff, S. (2015). Secrecy rate optimizations for a MIMO secrecy channel with a cooperative jammer. IEEE Transactions on Vehicular Technology, 64(5), 1833–1847.
Li, Q., Yang, Y., Ma, W. K., Lin, M., Ge, J., & Lin, J. (2015). Robust cooperative beamforming and artificial noise design for physical-layer secrecy in AF multi-antenna multi-relay networks. IEEE Transactions on Signal Processing, 63(1), 206–220.
Wang, L., Zhang, X., Ma, X., Song, M. (2013). Joint optimization for energy consumption and secrecy capacity in wireless cooperative networks. In: IEEE Wireless Communications and Networking Conference (WCNC) (pp. 941–946).
Wang, C., Wang, H. M., & Wang, B. (2015). Low-overhead distributed jamming for SIMO secrecy transmission with statistical CSI. IEEE Signal Processing Letters, 22(12), 2294–2298.
Wang, C., & Wang, H. M. (2015). Robust joint beamforming and jamming for secure AF networks: Low-complexity design. IEEE Transactions on Vehicular Technology, 64(5), 2192–2198.
Liu, Y., Li, L., Pesavento, M. (2014). Enhancing physical layer security in untrusted relay networks with artificial noise: A symbol error rate based approach. In: IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM) (pp. 261–264).
Krikidis, I., Thompson, J., Grant, P., McLaughlin, S. (2010). Power allocation for cooperative-based jamming in wireless networks with secrecy constraints. In: IEEE GLOBECOM Workshops (pp. 1177–1181).
Horn, R. A., & Johnson, C. R. (Eds.). (1986). Matrix analysis. New York, NY: Cambridge University Press.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sarma, S., Kuri, J. SNR based secure communication via untrusted amplify-and-forward relay nodes using artificial noise. Wireless Netw 24, 127–138 (2018). https://doi.org/10.1007/s11276-016-1318-8
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11276-016-1318-8