Skip to main content
Log in

Band notched UWB circular monopole antenna with inductance enhanced modified mushroom EBG structures

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Circular monopole antenna for ultra-wide band applications with notch band transition from WLAN to WiMAX is presented. The proposed antenna rejects WiMAX band (3.3–3.8 GHz). Antennas utilises modified mushroom-type electromagnetic band gap (EBG) structures to achieve band-notched designs. The proposed inductance enhanced modified EBG structures are 34 % compact than the conventional mushroom EBG structures. The band notched antenna designs using EBG structures have advantages like notch-frequency tuning, antenna design independent approach and omnidirectional radiation pattern. The step wise effect of inductance enhancement and tuning of notch from WLAN band (5–6 GHz) to WiMAX band is shown. Effect of variation of EBG structure parameters on which notched frequency depends is investigated. The proposed antenna has been fabricated on low cost FR4 substrate with overall dimensions as (42 × 50 × 1.6) mm3. Measured results are in good agreement with simulated ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Federal Communications Commission. (2002). Revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems. Tech. rep. ET-Docket 98-153, FCC02-48, Federal Communications Commission (FCC), Washington, DC, USA.

  2. Liang, J., Chiau, C. C., Chen, X., & Parini, C. G. (2004). Printed circular disc monopole antenna for ultra-wideband applications. Electronics Letters, 40(20), 1246–1248.

    Article  Google Scholar 

  3. Cho, Y. J., Kim, K. H., Choi, D. H., Lee, S. S., & Park, S. O. (2006). A miniature UWB planar monopole antenna with 5-GHz band-rejection filter and the time-domain characteristics. IEEE Transactions on Antennas and Propagation, 54(5), 1453–1460.

    Article  Google Scholar 

  4. Lee, W. S., Kim, D. Z., Kim, K. J., & Yu, J. W. (2006). Wideband planar monopole antennas with dual band-notched characteristics. IEEE Transactions on Microwave Theory and Techniques, 54(6), 2800–2806.

    Article  Google Scholar 

  5. Chung, K., Kim, J., & Choi, J. (2005). Wideband microstrip-FED monopole antenna having frequency band-notch function. IEEE Microwave and Wireless Components Letters, 15(11), 766–768.

    Article  Google Scholar 

  6. Kim, Y., & Kwon, D. H. (2004). CPW-FED planar ultra-wideband antenna having a frequency band notch function. Electronics Letters, 40(7), 403–405.

    Article  Google Scholar 

  7. Abbosh, A. M., Bialkowski, M. E., Mazierska, J., & Jacob, M. V. (2006). A planar UWB antenna with signal rejection capability in the 4–6 GHz band. IEEE Microwave and Wireless Components Letters, 16(5), 278–280.

    Article  Google Scholar 

  8. Hu, S., Chen, H., Law, C. L., Shen, Z., Zui, L., Zhang, W., et al. (2007). Backscattering cross section of ultrawideband antennas. IEEE Antennas and Wireless Propagation Letters, 6, 70–73.

    Article  Google Scholar 

  9. Lui, W. J., Cheng, C. H., Cheng, Y., & Zhu, H. (2005). Frequency notched ultra-wideband microstrip slot antenna with fractal tuning stub. Electronics Letters, 41(6), 294–296.

    Article  Google Scholar 

  10. Abbosh, A. M., & Bialkowski, M. E. (2009). Design of UWB planar band-notched antenna using parasitic elements. IEEE Transactions on Antennas and Propagation, 57(3), 796–799.

    Article  Google Scholar 

  11. Kim, K. H., & Park, S. O. (2006). Analysis of the small band-rejected antenna with the parasitic strip for UWB. IEEE Transactions on Antennas and Propagation, 54(6), 1688–1692.

    Article  Google Scholar 

  12. Qu, S. W., Li, J. L., & Xue, Q. (2006). A band-notched ultra-wideband printed monopole antenna. IEEE Antennas and Wireless Propagation Letters, 5, 495–498.

    Article  Google Scholar 

  13. Ryu, K. S., & Kishk, A. A. (2009). UWB antenna with single or dual band notches for lower WLAN band and upper WLAN band. IEEE Transactions on Antennas and Propagation, 57(12), 3942–3950.

    Article  Google Scholar 

  14. Zhu, F., Gao, S., Ho, A. T. S., Al Hameed, A., See, C. H., Brown, T. W. C., et al. (2013). Multiple band-notched UWB antenna with band-rejected elements integrated in the feed line. IEEE Transactions on Antennas and Propagation, 61(5), 3952–3960.

    Article  Google Scholar 

  15. Foudazi, A., Hassani, H. R., & Ali Nezhad, S. M. (2012). Small UWB planar monopole antenna with added GPS/GSM/WLAN bands. IEEE Transactions on Antennas and Propagation, 60(6), 2987–2992.

    Article  Google Scholar 

  16. Tang, M. C., Xiao, S., Deng, T., Wang, D., Guan, J., Wang, B., et al. (2011). Compact UWB antenna with multiple band-notches for WiMAX and WLAN. IEEE Transactions on Antennas and Propagation, 59(4), 1372–1376.

    Article  Google Scholar 

  17. Deng, J. Y., Yin, Y. Z., Zhou, S. G., & Liu, Q. Z. (2008). Compact ultra-wideband antenna with tri-band notched characteristics. Electronics Letters, 44(21), 1231–1233.

    Article  Google Scholar 

  18. Trang, N. D., Lee, D. H., & Park, H. C. (2011). Design and analysis of compact printed triple band-notched UWB antenna. IEEE Antennas and Wireless Propagation Letters, 10, 403–406.

    Article  Google Scholar 

  19. Yazdi, M., & Komjani, N. (2011). Design of a band-notched UWB monopole antenna by means of an EBG structure. IEEE Antennas and Wireless Propagation Letters, 10, 170–173.

    Article  Google Scholar 

  20. Peng, L., & Ruan, C. (2011). UWB band-notched monopole antenna design using electromagnetic-bandgap structures. IEEE Transactions on Microwave Theory and Techniques, 59, 1074–1081.

    Article  Google Scholar 

  21. Zheng, Q. R., Fu, Y. Q., & Yuan, N. C. (2008). A novel compact spiral electromagnetic band-gap (EBG) structure. IEEE Transactions on Antennas and Propagation, 56(6), 1656–1660.

    Article  Google Scholar 

  22. Wang, C.-L., Shiue, G. H., Guo, W.-D., & Wu, R.-B. (2006). A systematic design to suppress wideband ground bounce noise in high-speed circuits by electromagnetic-bandgap-enhanced split powers. IEEE Transactions on Microwave Theory and Techniques, 54(12), 4209–4217.

    Article  Google Scholar 

  23. Xie, H.-H., Jiao, Y.-C., Song, K., & Yang, B. (2010). Miniature electromagnetic band-gap structure using spiral ground plane. Progress in Electromagnetics Research Letters, 17, 163–170.

    Article  Google Scholar 

  24. Simovski, C. R., Maagt, P., & Melchakova, I. (2005). High-impedance surfaces having stable resonance with respect to polarization and incidence angle. IEEE Transactions on Antennas and Propagation, 53(3), 908–914.

    Article  Google Scholar 

  25. McVay, J., & Engheta, N. (2004). High impedance metamaterial surfaces using Hilbert-curve inclusions. IEEE Microwave and Wireless Components Letters, 14(3), 130–132.

    Article  Google Scholar 

  26. Vardaxoglou, J. C., Gousetis, G., & Feresidis, A. P. (2007). Miniaturisation schemes for metallodielectric electromagnetic bandgap structures. IET Microwaves, Antennas and Propagation, 1(1), 234–239.

    Article  Google Scholar 

  27. Yang, F., & Rahmat-Samii, Y. (2004). Polarization dependent electromagnetic band gap (PDEBG) structures: designs and applications. Microwave and Optical Technology Letters, 41(6), 439–444.

    Article  Google Scholar 

  28. Sievenpiper, D. F., Schaffner, J. H., Song, H. J., Loo, R. Y., & Tangonan, G. (2003). Two-dimensional beam steering using an electrically tunable impedance surface. EEE Transactions on Antennas and Propagation, 51(10), 2713–2722.

    Article  Google Scholar 

  29. Boutayeb, H., & Denidni, T. A. (2006). Technique for reducing the power supply in reconfigurable cylindrical electromagnetic bandgap structures. IEEE Antennas and Wireless Propagation Letters, 5(1), 424–425.

    Article  Google Scholar 

  30. Ge, Y., & Esselle, K. P. (2007). GA/FDTD technique for the design and optimisation of periodic metamaterials. IET Microwaves, Antennas & Propagation, 1(1), 158–164.

    Article  Google Scholar 

  31. Dai, M., & Sung, C. W. (2013). Achieving high diversity and multiplexing gains in the asynchronous parallel relay network. Transactions on Emerging Telecommunications Technologies, 24(2), 232–243.

    Article  Google Scholar 

  32. Arslan, H., Chen, Z. N., & Di Benedetto, M.-G. (2006). Ultra-wideband wireless communication. Hoboken: Wiley.

    Book  Google Scholar 

  33. Oppermann, I., Hamalainen, M., & Linatti, J. (2004). UWB theory and applications. Hoboken: Wiley.

    Book  Google Scholar 

  34. Yang, F., & Rahmat-Samii, Y. (2004). Electromagnetic band gap structures in antenna engineering. Cambridge: Cambridge University Press.

    Google Scholar 

  35. Sievenpiper, D. (1999). High-impedance electromagnetic surfaces. Ph.D. dissertation, Department of Electrical Engineering University of California, Los Angeles.

  36. Jaglan, N., & Gupta, S. D. (2015). Design and analysis of performance enhanced microstrip patch antenna with EBG substrate. International Journal of Microwave and Optical Technology (IJMOT), 10(2), 79–88.

    Google Scholar 

  37. Jaglan, N., & Gupta, S. D. (2015). Reflection phase characteristics of EBG structures and Wlan band notched circular monopole antenna design. International Journal of Communications Antenna and Propagation (IRECAP), 5(4), 233–240.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Jaglan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaglan, N., Gupta, S.D., Kanaujia, B.K. et al. Band notched UWB circular monopole antenna with inductance enhanced modified mushroom EBG structures. Wireless Netw 24, 383–393 (2018). https://doi.org/10.1007/s11276-016-1343-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-016-1343-7

Keywords

Navigation