Skip to main content

Advertisement

Log in

Proportional-fair energy-efficient radio resource allocation for OFDMA smallcell networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

This paper investigates the energy-efficient radio resource allocation problem of the uplink smallcell networks. Different from the existing literatures which focus on improving the energy efficiency (EE) or providing fairness measured by data rates, this paper aims to provide fairness guarantee in terms of EE and achieve EE-based proportional fairness among all users in smallcell networks. Specifically, EE-based global proportional fairness utility optimization problem is formulated, taking into account each user’s quality of service, and the cross-tier interference limitation to ensure the macrocell transmission. Instead of dealing with the problem in forms of sum of logarithms directly, the problem is transformed into a form of sum of ratios firstly. Then, a two-step scheme which solves the subchannel and power allocation separately is adopted, and the corresponding subchannel allocation algorithm and power allocation algorithm are devised, respectively. The subchannel allocation algorithm is heuristic, but can achieve close-to-optimal performance with much lower complexity. The power allocation scheme is optimal, and is derived based on a novel method which can solve the sum of ratios problems efficiently. Numerical results verify the effectiveness of the proposed algorithms, especially the capability of EE fairness provisioning. Specifically, it is suggested that the proposed algorithms can improve the fairness level among smallcell users by 150–400 % compared to the existing algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Boyd, S., & Vandenberghe, L. (2004). Convex Optimization. New York, NY: Cambridge University Press.

    Book  MATH  Google Scholar 

  2. Bu, S., Yu, F., & Yanikomeroglu, H. (2015). Interference-aware energy-efficient resource allocation for OFDMA-based heterogeneous networks with incomplete channel state information. IEEE Transactions on Vehicular Technology, 64(3), 1036–1050. doi:10.1109/TVT.2014.2325823.

    Article  Google Scholar 

  3. Buzzi, S., Colavolpe, G., Saturnino, D., & Zappone, A. (2012). Potential games for energy-efficient power control and subcarrier allocation in uplink multicell OFDMA systems. IEEE Journal of Selected Topics in Signal Processing, 6(2), 89–103. doi:10.1109/JSTSP.2011.2177069.

    Article  Google Scholar 

  4. Dinkelbach, W. (1967). On nonlinear fractional programming. Management Science, 13(7), 492–498.

    Article  MathSciNet  MATH  Google Scholar 

  5. Ha, V. N., & Le, L. B. (2014). Fair resource allocation for OFDMA femtocell networks with macrocell protection. IEEE transactions on vehicular technology, 63(3), 1388–1401. doi:10.1109/TVT.2013.2284572.

    Article  Google Scholar 

  6. Ho, C. Y., & Huang, C. Y. (2012). Non-cooperative multi-cell resource allocation and modulation adaptation for maximizing energy efficiency in uplink OFDMA cellular networks. IEEE Wireless Communications Letters, 1(5), 420–423. doi:10.1109/WCL.2012.061212.120239.

    Article  Google Scholar 

  7. Jain, R., Chiu, D. M., & Hawe, W. R. (1984). A quantitative measure of fairness and discrimination for resource allocation in shared computer system (Vol. 38). Hudson, MA: Eastern Research Laboratory, Digital Equipment Corporation.

    Google Scholar 

  8. Jiang, C., Zhang, H., Ren, Y., & Chen, H. H. (2014). Energy-efficient non-cooperative cognitive radio networks: Micro, meso, and macro views. IEEE Communications Magazine, 52(7), 14–20. doi:10.1109/MCOM.2014.6852078.

    Article  Google Scholar 

  9. Jong, Y. (2012). An efficient global optimization algorithm for nonlinear sum-of-ratios problem. www.optimizationonline.org.

  10. Kelley, C. T. (2003). Solving nonlinear equations with Newton’s method (Vol. 1). Philadelphia: SIAM.

    Book  MATH  Google Scholar 

  11. Kelly, F. P., Maulloo, A. K., & Tan, D. K. (1998). Rate control for communication networks: Shadow prices, proportional fairness and stability. Journal of the Operational Research Society, 49, 237–252.

    Article  MATH  Google Scholar 

  12. Li, Y., Sheng, M., Tan, C. W., Zhang, Y., Sun, Y., Wang, X., et al. (2015). Energy-efficient subcarrier assignment and power allocation in OFDMA systems with max–min fairness guarantees. IEEE Transactions on Communications, 63(9), 3183–3195. doi:10.1109/TCOMM.2015.2450724.

    Article  Google Scholar 

  13. Lu, Z., Bansal, T., & Sinha, P. (2013). Achieving user-level fairness in open-access femtocell-based architecture. IEEE Transactions on Mobile Computing, 12(10), 1943–1954. doi:10.1109/TMC.2012.157.

    Article  Google Scholar 

  14. Miao, G., Himayat, N., Li, G., & Talwar, S. (2012). Low-complexity energy-efficient scheduling for uplink OFDMA. IEEE Transactions on Communications, 60(1), 112–120. doi:10.1109/TCOMM.2011.112811.090122.

    Article  Google Scholar 

  15. Nguyen, T. D., & Han, Y. (2006). A proportional fairness algorithm with QoS provision in downlink OFDMA systems. IEEE Communications Letters, 10(11), 760–762. doi:10.1109/LCOMM.2006.060750.

    Article  Google Scholar 

  16. Sabagh, M. R., Dianati, M., Tafazolli, R., & Mehrjoo, M. (2015). Energy efficient and quality of service aware resource block allocation in OFDMA systems. IET Communications, 9(12), 1479–1492. doi:10.1049/iet-com.2014.0782.

    Article  Google Scholar 

  17. Shen, Z., Andrews, J., & Evans, B. (2005). Adaptive resource allocation in multiuser OFDM systems with proportional rate constraints. IEEE Transactions on Wireless Communications, 4(6), 2726–2737. doi:10.1109/TWC.2005.858010.

    Article  Google Scholar 

  18. Wu, Q., Chen, W., Tao, M., Li, J., Tang, H., & Wu, J. (2015). Resource allocation for joint transmitter and receiver energy efficiency maximization in downlink OFDMA systems. IEEE Transactions on Communications, 63(2), 416–430. doi:10.1109/TCOMM.2014.2385705.

    Article  Google Scholar 

  19. Xiong, C., Li, G., Zhang, S., Chen, Y., & Xu, S. (2012). Energy-efficient resource allocation in OFDMA networks. IEEE Transactions on Communications, 60(12), 3767–3778. doi:10.1109/TCOMM.2012.082812.110639.

    Article  Google Scholar 

  20. Xiong, C., Lu, L., & Li, G. (2013). Energy-efficient spectrum access in cognitive radio. In IEEE PIMRC’13 (pp. 2528–2532). doi:10.1109/PIMRC.2013.6666572.

  21. Xu, L., Yu, G., & Jiang, Y. (2015). Energy-efficient resource allocation in single-cell OFDMA systems: Multi-objective approach. IEEE Transactions on Wireless Communications, 14(10), 5848–5858. doi:10.1109/TWC.2015.2443104.

    Article  Google Scholar 

  22. Xu, Q., Li, X., Ji, H., & Du, X. (2014). Energy-efficient resource allocation for heterogeneous services in OFDMA downlink networks: Systematic perspective. IEEE Transactions on Vehicular Technology, 63(5), 2071–2082. doi:10.1109/TVT.2014.2312288.

    Article  Google Scholar 

  23. Ye, H., Lim, G., Cimini, L.J., & Tan, Z. (2013). Energy-efficient resource allocation in uplink OFDMA systems under QoS constraints. In IEEE Milcom’13 (pp. 424–428). doi:10.1109/MILCOM.2013.79.

  24. Ye, H., Lim, G., Cimini, L. J., & Tan, Z. (2015). Energy-efficient scheduling and resource allocation in uplink OFDMA systems. IEEE Communications Letters, 19(3), 439–442. doi:10.1109/LCOMM.2015.2388487.

    Article  Google Scholar 

  25. Zhang, H., Chu, X., Zheng, W., & Wen, X. (2012). Interference-aware resource allocation in co-channel deployment of OFDMA femtocells. In IEEE ICC’12 (pp. 4663–4667). doi:10.1109/ICC.2012.6364435.

  26. Zhang, H., Jiang, C., Beaulieu, N., Chu, X., Wang, X., & Quek, T. (2015). Resource allocation for cognitive small cell networks: A cooperative bargaining game theoretic approach. IEEE Transactions on Wireless Communications, 14(6), 3481–3493. doi:10.1109/TWC.2015.2407355.

    Article  Google Scholar 

  27. Zhang, H., Jiang, C., Beaulieu, N., Chu, X., Wen, X., & Tao, M. (2014). Resource allocation in spectrum-sharing OFDMA femtocells with heterogeneous services. IEEE Transactions on Communications, 62(7), 2366–2377. doi:10.1109/TCOMM.2014.2328574.

    Article  Google Scholar 

  28. Zhang, H., Jiang, C., Mao, X., & Chen, H. H. (2016). Interference-limited resource optimization in cognitive femtocells with fairness and imperfect spectrum sensing. IEEE Transactions on Vehicular Technology, 65(3), 1761–1771. doi:10.1109/TVT.2015.2405538.

    Article  Google Scholar 

  29. Zhang, H., Nie, Y., Cheng, J., Leung, V.C.M., & Nallanathan, A. (2015). Hybrid spectrum sensing based power control for energy efficient cognitive small cell network. In 2015 IEEE global communications conference (GLOBECOM) (pp. 1–5). doi:10.1109/GLOCOM.2015.7417809.

  30. Zhou, L., Zhu, C., Ruby, R., Wang, X., Ji, X., Wang, S., et al. (2015). QoS-aware energy-efficient resource allocation in ofdm-based heterogenous cellular networks. International Journal of Communication Systems,. doi:10.1002/dac.2931.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61271179).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenpeng Jing.

Appendix: Proof of Theorem 2

Appendix: Proof of Theorem 2

Note that the Lagrangian dual function (17) can be decomposed into a \(M \times K\times N\) subfunctions, i.e.,

$$\begin{aligned} L(p_{m,k}^n,{\varvec{\lambda ,\gamma ,\zeta }})= & {} \sum \limits _{m \in \mathcal{M}} \sum \limits _{k \in {\mathcal{K}_m}} \sum \limits _{n \in \mathcal{N}} {L_{m,k}^n\left( {p_{m,k}^n,{\varvec{\lambda ,\gamma ,\zeta }}} \right) }\\&\quad +\, \sum \limits _{m \in \mathcal{M}} {\sum \limits _{k \in {\mathcal{K}_m}} {{\mu _{m,k}}} {\left( { - {\mu _{m,k}}{\beta _{m,k}}p_{m,k}^C + {\gamma _{m,k}}P_{m,k}^{\max } - {\lambda _{m,k}}R_{m,k}^{\min }} \right) }} \\&\quad +\, \sum \limits _{n \in \mathcal{N}} {{\zeta _n}I_{Th}^n}, \end{aligned}$$
(30)

where \(L_{m,k}^n\left( {p_{m,k}^n,{\varvec{\lambda ,\gamma ,\zeta }}} \right) = \left( {{\mu _{m,k}}{w_{m,k}} + {\lambda _{m,k}}} \right) x_{m,k}^nr_{m,k}^n - \left( {{\mu _{m,k}}{\beta _{m,k}}\xi + {\gamma _{m,k}} + {\zeta _n}g_{M,m,k}^n} \right) x_{m,k}^np_{m,k}^n.\)

Due to that problem (13) is a convex optimization problem, the Karush-Kuhn-Tucker (KKT) conditions, i.e.,

$$\begin{aligned} \nabla L_{m,k}^n\left( {p_{m,k}^n} \right)= & \, 0,\quad {\forall n \in \mathcal {N}},\quad {\forall k \in {\mathcal{K}_m}},\quad {\forall m \in \mathcal {M}}, \end{aligned}$$
(31)
$$\begin{aligned} {\lambda _{m,k}}\left( {R_{m,k}^{} - R_{m,k}^{\min }} \right)= & \, 0,\quad {\forall k \in \mathcal{K}_m},\quad \forall m \in \mathcal {M}, \end{aligned}$$
(32)
$$\begin{aligned} {\gamma _{m,k}}\left( {P_{m,k}^{\max } - P_{m,k}^{}} \right)= & \, 0,\quad {\forall k \in \mathcal{K}_m},\quad \forall m \in \mathcal {M}, \end{aligned}$$
(33)
$$\begin{aligned} {\zeta _n}\left( {I_{Th}^n - \sum \limits _{m \in \mathcal{M}} {\sum \limits _{k \in \mathcal{K}_m} {x_{m,k}^np_{m,k}^ng_{M,m,k}^n} } } \right)= & \, 0,\quad \forall n \in \mathcal {N}, \end{aligned}$$
(34)

are both the sufficient and necessary conditions which ensure certain power allocation solution \(p_{m,k}^n\) to be optimal [1]. Based on Eq. (33) of KKT conditions, i.e.,

$$\begin{aligned} \frac{{\partial L_{m,k}^n\left( {p_{m,k}^n,\mathbf{{\lambda ,\gamma ,\zeta }}} \right) }}{{\partial p_{m,k}^n}} = 0, \end{aligned}$$
(35)

we can derive the optimal power allocation as

$$\begin{aligned} {p_{m,k}^n}= {\left\{ \begin{array}{ll}\begin{array}{ll} {\left( {WF_{m,k}^n - \frac{{{\sigma ^2} + I_m^n}}{{g_{m,k}^n}}} \right) ^ + }, &{}\quad if\; x_{m,k}^n = 1;\\ 0,&{}\quad if\; x_{m,k}^n = 0; \end{array} \end{array}\right. } \end{aligned}$$
(36)

where \({\left( y \right) ^ + } = \max \left( {0,y} \right)\) and \(WF_{m,k}^n = \frac{{\left( {{\mu _{m,k}}{w_{m,k}} + {\lambda _{m,k}}} \right) B}}{{\ln 2({\mu _{m,k}}{\beta _{m,k}}\xi + {\gamma _{m,k}} + {\zeta _n}g_{M,m,k}^n)}}.\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, W., Wen, X., Lu, Z. et al. Proportional-fair energy-efficient radio resource allocation for OFDMA smallcell networks. Wireless Netw 24, 695–707 (2018). https://doi.org/10.1007/s11276-016-1359-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-016-1359-z

Keywords

Navigation