Skip to main content
Log in

A novel statistical and distributed CAC algorithm for IEEE 802.11 based single and multi-hop wireless ad hoc networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, we propose a statistical Call Admission Control (CAC) schemes for single and multi-hop IEEE 802.11 based wireless ad hoc networks. Unlike most papers which consider average end-to-end delay, our algorithm guarantees statistical delay that would be more efficient for real time multimedia applications. We use Effective Bandwidth/Effective Capacity theory to compute delay bound stochastically in each hop. The proposed distributed CAC algorithm is suitable for ad hoc networks. Also, with a few changes, it has been implemented in the AODV routing protocol. Simulation results demonstrate that proposed CAC algorithm works efficiently in both single and multi-hop networks. Moreover, we investigated our algorithm with aggregated traffic and the result shows that the algorithm performed accurately under that condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Sarkar, S. K., Basavaraju, T., & Puttamadappa, C. (2007). Ad hoc mobile wireless networks: Principles, protocols, and applications. Boca Raton: CRC Press.

    Book  Google Scholar 

  2. IEEE Std 802.15.4-2011. (2011). IEEE standard for local and metropolitan area networkspart 15.4: Low-rate wireless personal area networks (lr-wpans). Revision of IEEE Std 802.15.4-2006, 1314. doi:10.1109/IEEESTD.2011.6012487

  3. IEEE Std 802.11-2007. (2007). IEEE standard for information technology—Telecommunications and information exchange between systems—local and metropolitan area networks—specific requirements—part 11: Wireless lan medium access control (MAC) and physical layer (PHY) specifications. Revision of IEEE Std 802.11-1999, 11076. doi:10.1109/IEEESTD.2007.373646

  4. Wu, D., & Negi, R. (2003). Effective capacity: A wireless link model for support of quality of service. IEEE Transactions on Wireless Communications, 2(4), 630643. doi:10.1109/TWC.2003.814353.

    Google Scholar 

  5. Hanzo, L, I. I., & Tafazolli, R. (2009). Admission control schemes for 802.11-based multi-hop mobile ad hoc networks: A survey. IEEE Communications Surveys Tutorials, 11(4), 78108. doi:10.1109/SURV.2009.090406.

    Article  Google Scholar 

  6. Khoukhi, L., Badis, H., Merghem-Boulahia, L., & Esseghir, M. (2013). Admission control in wireless ad hoc networks: A survey. EURASIP Journal on Wireless Communications and Networking. doi:10.1186/1687-1499-2013-109

  7. Abdrabou, A., & Zhuang, W. (2008). Stochastic delay guarantees and statistical call admission control for IEEE 802.11 single-hop ad hoc networks. IEEE Transactions on Wireless Communications, 7(10), 39723981. doi:10.1109/T-WC.2008.070564.

    Article  Google Scholar 

  8. Zhao, Q., Tsang, D., & Sakurai, T. (2011). A simple critical-load-based cac scheme for ieee 802.11 dcf networks. IEEE/ACM Transactions on Networking, 19(5), 14851498. doi:10.1109/TNET.2011.2116801.

    Article  Google Scholar 

  9. Bensaou, B., Kong, Z.-N., & Tsang, D. (2008). A measurement-assisted, model-based admission control algorithm for IEEE 802.11e. In International symposium on parallel architectures, algorithms, and networks, 2008. I-SPAN 2008, pp. 260–265. doi:10.1109/I-SPAN.2008.44

  10. Cai, L., Shen, X., Mark, J. W., Cai, L., & Xiao, Y. (2006). Voice capacity analysis of wlan with unbalanced traffic. IEEE Transactions on Vehicular Technology, 55(3), 752761. doi:10.1109/TVT.2006.874145.

    Article  Google Scholar 

  11. Cheng, Y., Ling, X., Song, W., Cai, L., Zhuang, W., & Shen, X. (2007). A cross-layer approach for wlan voice capacity planning. IEEE Journal on Selected Areas in Communications, 25(4), 678688. doi:10.1109/JSAC.2007.070505.

    Article  Google Scholar 

  12. Chen, X., Zhai, H., Tian, X., & Fang, Y. (2006). Supporting qos in ieee 802.11e wireless lans. IEEE Transactions on Wireless Communications, 5(8), 22172227. doi:10.1109/TWC.2006.1687738.

    Google Scholar 

  13. Kafetzakis, E., Kontovasilis, K., & Stavrakakis, I. (2012). A novel effective capacity-based framework for providing statistical qos guarantees in IEEE 802.11 WLANs. Computer Communications, 35(2), 249–262. doi:10.1016/j.comcom.2011.09.012. URL http://www.sciencedirect.com/science/article/pii/S0140366411002982

  14. Perkins, C., & Royer, E. (1999). Ad-hoc on-demand distance vector routing. In: Proceedings 2nd IEEE workshop on mobile computing systems and applications, 1999. WMCSA 99, 1999, pp. 90–100. doi:10.1109/MCSA.1999.749281

  15. Haq, M., Matsumoto, M., Bordim, J., Kosuga, M., & Tanaka, S. (2004). Admission control and simple class based qos provisioning for mobile ad hoc network. In IEEE 60th vehicular technology conference. VTC2004-Fall, Vol. 4, pp. 2712–2718. doi:10.1109/VETECF.2004.1400551

  16. Gharehajlu, M.M., Zokaei, S., & Darmani, Y. (2015). Statistical analysis of different traffic types effect on qos of wireless ad hoc networks. Journal of Information Systems and Telecommunication, 3(1).

  17. Angrishi, K. (2013). An end-to-end stochastic network calculus with effective bandwidth and effective capacity. Computer Networks 57(1), 78–84. doi:10.1016/j.comnet.2012.09.003. URL http://www.sciencedirect.com/science/article/pii/S1389128612003258

  18. Kelly, F., Zachary, S., & Ziedins, I. (1996). Stochastic networks: Theory and applications. Oxford: Oxford University Press.

    MATH  Google Scholar 

  19. Chang, C.-S., & Thomas, J. (1995). Effective bandwidth in high-speed digital networks. IEEE Journal on Selected Areas in Communications, 13(6), 1091 1100. doi:10.1109/49.400664.

    Google Scholar 

  20. Courcoubetis, C., & Weber, R. (1995). Effective bandwidths for stationary sources.

  21. Jiang, Y., & Liu, Y. (2008). Stochastic network calculus. New York: Springer.

    MATH  Google Scholar 

  22. Network SimulatorNS (Version 2). URL: http://www.isi.edu/nsnam/ns/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmood Mollaei.

Appendices

Appendix 1: Proof of Proposition 1

In Eq. (10) \(D_{EE}(t)\) is equal to:

$$\begin{aligned} D_{EE}(t)=D_1(t)+D_2(t)+\cdots +D_i(t)+\ldots D_H(t) \end{aligned}$$
(15)

By substituting (15) in (8) and supposing \(\gamma (\lambda )\approx 1\) we have:

$$\begin{aligned} \begin{aligned}&\sup _t\,Pr{\left\{ D_i(t)>D_{max}-{\sum _{j=0}^H}_{j\ne i}D_j(t)\right\} } \\&\quad \approx e^{-{\theta _i^c\left( \lambda _i\right) *\lambda _i*\left( D_{max}-{\sum _{j=0}^H}_{j\ne i}D_j(t)\right) }} \end{aligned} \end{aligned}$$
(16)

Now if we suppose \(\theta _i^c(\lambda _i)*\lambda _i\) is equal to the minimum of QoS exponent in the path, namely equal to (11), (16) is given by:

$$\begin{aligned} \begin{aligned}&\sup _t\,Pr{\left\{ D_i(t)>D_{max}-{\sum _{j=0}^H}_{j\ne i}D_j(t)\right\} } \\&\quad \approx e^{-{\theta _i^c\left( \lambda _i\right) *\lambda _i*\left( D_{max}-{\sum _{j=0}^H}_{j\ne i}D_j(t)\right) }}\\&\quad \le e^{-{\theta ^c(\lambda )*\lambda *\left( D_{max}-{\sum _{j=0}^H}_{j\ne i}D_j(t)\right) }} \end{aligned} \end{aligned}$$
(17)

In homogeneous networks we assume that the delay in all hops are the same and equal to \(\frac{D_{max}}{H}\), the upper bound in multi-hop network is yield to:

$$\begin{aligned} \begin{aligned}&\sup _t\,Pr{\left\{ D_i(t)>D_{max}-{\sum _{j=0}^H}_{j\ne i}D_j(t)\right\} } \\&\quad \approx e^{-{\theta _i^c\left( \lambda _i\right) *\lambda _i* \left( D_{max}-{\sum _{j=0}^H}_{j\ne i}D_j(t)\right) }}\\&\quad \le e^{-{\theta ^c(\lambda )*\lambda *\left( D_{max}-{\sum _{j=0}^H}_{j\ne i}D_j(t)\right) }} \le e^{-{\theta ^c(\lambda )*\lambda *\frac{D_{max}}{H}}} \end{aligned} \end{aligned}$$
(18)

So the proposition is proven.

Appendix 2: Flowchart of CAC algorithm

In this appendix, the flowcharts of the implemented algorithm in NS2 are represented. Figures 15, 16 and 17 show the modified RREQ function, the implemented RREP function and the modified receive function in NS2 for our CAC algorithm, respectively (Fig. 14).

Fig. 14
figure 14

Start point of implemented algorithm

Fig. 15
figure 15

The modified RREQ function in NS2

Fig. 16
figure 16

The modified RREP function in NS2

Fig. 17
figure 17

The modified data packet function in NS2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mollaei, M., Darmani, Y. A novel statistical and distributed CAC algorithm for IEEE 802.11 based single and multi-hop wireless ad hoc networks. Wireless Netw 24, 955–967 (2018). https://doi.org/10.1007/s11276-016-1387-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-016-1387-8

Keywords

Navigation