Skip to main content
Log in

A performance study for the multicast collision prevention mechanism for IEEE 802.11

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In IEEE 802.11 networks a data packet is delivered simultaneously to multiple receivers through the multicast paradigm. The standard defines a simple mechanism that does not implement any error-recovery mechanism, thus, the reliability of the service provided to the multicast users is penalized. This issue is more important as the number of collisions increases due to a large number of active stations and/or a high load network. In this paper we carry out a detailed optimization study of the multicast collision prevention (MCP) mechanism, a highly-efficient multicast collision avoidance mechanism for IEEE 802.11 previously introduced by the authors. Besides a more in deep explanation of MCP, this study includes a comparative performance evaluation of the optimized MCP with the IEEE 802.11 standard. Results shown that, through this optimization, the number of collisions in MCP can be made negligible for any network load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. LAN MAN Standards Committee of the IEEE Computer Society. (2007). IEEE standard for wireless LAN medium access control (MAC) and physical layer (PHY) specifications.

  2. Kuri, J., & Kasera, S. K. (2001). Reliable multicast in multi-access wireless LANs. ACM Wireless Networks, 7(4), 359–369.

    Article  MATH  Google Scholar 

  3. Li, Z., & Herfet, T. (2008). BLBP: A beacon-driven leader based protocol for MAC layer multicast error control in wireless LANs. 4th WiCOM, Dalian, China.

  4. Lyakhov, A., Vishnevsky, V., & Yakimov, M. (2007). Multicast QoS support in IEEE 802.11 WLANs. In IEEE international conference on mobile adhoc and sensor systems conference (pp. 1–3).

  5. Gupta, S. K. S., Shankar, V., & Lalwani, S. (2003). Reliable multicast MAC protocol for wireless LANs. In IEEE international conference in communications.

  6. Srinivas, V., & Ruan, L. (2009). An efficient reliable multicast protocol for 802.11-based wireless LANs. In Proceedings of IEEE WoWMoM’09.

  7. Wang, X., Wang, L., Wang, Y., & Gu, D. (2008). Reliable multicast mechanism in WLAN with extended implicit MAC acknowledgment. In IEEE vehicular technology conference (pp. 2695–2699).

  8. Majumda, A., Sachs, D. G., Kozintsev, I. V., Ramchandran, K., & Yeung, M. M. (2002). Multicast and unicast real-time video streaming over wireless LANs. IEEE Transactions on Circuits and Systems for Video Technology, 12(6), 524–534. doi:10.1109/TCSVT.2002.800315.

    Article  Google Scholar 

  9. Puri, R., Lee, K. W., Ramchandran, K., & Bharghavan, V. (2001). An integrated source transcoding and congestion control paradigm for video streaming in the internet. IEEE Transactions on Multimedia, 3(1), 18–32.

    Article  Google Scholar 

  10. Zhao, L., & Herfet, T. (2009). MAC layer multicast error control for IPTV in wireless LANs. IEEE Transactions on Broadcasting, 55(2), 353–362. doi:10.1109/TBC.2009.2016502.

    Article  Google Scholar 

  11. Wu, M., & Radha, H. (2010). Distributed network embedded FEC for real-time multicast applications in multi-hop wireless networks. Wireless Networks, 16(5), 1447–1458. doi:10.1007/s11276-009-0213-y.

    Article  Google Scholar 

  12. Greebla, G., & Katzir, L. (2010). Cross-layer hybrid FEC/ARQ reliable multicast with adaptive modulation and coding in broadband wireless networks. IEEE/ACM Transaction on Networking, 18(6), 1908–1920.

    Article  Google Scholar 

  13. LAN MAN Standards Committee of the IEEE Computer Society, ANSI/IEEE Std 802.11aa (2012). Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. Amendment 2: MAC Enhancements for Robust Audio Video Streaming.

  14. Santos, M. A., Villalon, J., Ramirez-Mireles, F., Orozco-Barbosa, L., & Delicado, J. (2011). A novel multicast collision prevention mechanism for IEEE 802.11. IEEE Communications Letters, 15(11), 1190–1192. doi:10.1109/LCOMM.2011.11.111408.

    Article  Google Scholar 

  15. Cai, L. X., Shen, X., Mark, J. W., & Yang Xiao, L. C. (2006). Voice capacity analysis of WLAN with unbalanced traffic. IEEE Transactions on Vehicular Technology, 55(3), 752–761.

    Article  Google Scholar 

  16. Opnet. Technologies. Inc. OPNET Modeler 11.5 (c)1987–2006. http://www.opnet.com

Download references

Acknowledgements

This work was supported by the Spanish MICINN, Plan E funds, as well as European Commission FEDER funds, under Grant TIN2015-66972-C5-2-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ángeles Santos.

Additional information

Fernando Ramírez Mireles—deceased.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, M.Á., Villalón, J., Orozco-Barbosa, L. et al. A performance study for the multicast collision prevention mechanism for IEEE 802.11. Wireless Netw 24, 1297–1311 (2018). https://doi.org/10.1007/s11276-016-1405-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-016-1405-x

Keywords

Navigation