Skip to main content
Log in

Performance analysis of high-traffic cognitive radio communication system using hybrid spectrum access, prediction and monitoring techniques

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, the hybrid spectrum access and prediction techniques are exploited simultaneously in the high-traffic cognitive radio communication system, in order to enhance the throughput and overcome the problem of waiting states. The hybrid spectrum access is responsible for throughput enhancement by escaping the waiting states whereas the spectrum prediction alleviates the sensing errors in the high-traffic communication environment. The closed-form expression for the throughput of cognitive user (CU) communication is derived and validated the proposed approach with the reported literature. Moreover, a new framework is proposed to conquer the sharing issues of conventional and proposed approaches. In addition to this, the performance metrics of proposed framework such as the data-loss, energy-loss of the CU and interference at the PU have been analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Alkyldiz, I. F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2006). NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127–2159.

    Article  MATH  Google Scholar 

  2. Ghasemi, A., & Sousa, E. S. (2007). Fundamental limits of spectrum-sharing in fading environment. IEEE Transactions on Wireless Communications, 6(2), 649–658.

    Article  Google Scholar 

  3. Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making software radio more personal. IEEE Personal Communication, 6(4), 13–18.

    Article  Google Scholar 

  4. Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communication, 23(2), 201–220.

    Article  Google Scholar 

  5. Thakur, P., Singh, G., & Satasia, S. N. (2016). Spectrum sharing in cognitive radio communication system using power constraints: A technical review. Perspectives in Science, 8, 651–653.

    Article  Google Scholar 

  6. Khoshkholg, M. G., Navaie, K., & Yanikomeroglu, H. (2010). Access strategies for spectrum sharing in fading environment: Overlay, underlay and mixed. IEEE Transactions on Mobile Computing, 9(12), 1780–1793.

    Article  Google Scholar 

  7. Sharma, S. K., Chatzinotas, S. and Ottersten, B. (2014). A hybrid cognitive transceiver architecture: Sensing throughput tradeoff. Proceedings cognitive radio wireless networks and communications (CROWNCOM), Oulu Finland (pp 143–149).

  8. Jiang, X., Wang, K. K., Zang, Y., & Edwards, D. (2013). On hybrid overlay-underlay dynamic spectrum access: Double-threshold energy detection and Markov model. IEEE Transactions on Vehicular Technology, 62(8), 4078–4083.

    Article  Google Scholar 

  9. Pandit, S., & Singh, G. (2014). Throughput maximization with reduced data loss rate in cognitive radio networks. Telecommunication Systems, 57(2), 209–215.

    Article  Google Scholar 

  10. Verma, G. and Sahu, O. P. (2016). Intelligent selection of threshold in cognitive radio system. Telecommunication Systems (Online). DOI: 10.1007/s11235-016-0141-y.

  11. Thakur, P., Kumar, A., Pandit, S., Singh, G. and Satasia, S. N. (2016). Frame structures for hybrid spectrum accessing strategy in cognitive radio communication system. Proceedings IEEE international conference on contemporary computing (IC-3), Noida.

  12. Thakur, P., Kumar, A., Pandit, S., Singh, G., & Satasia, S. N. (2016). Advanced frame structures for hybrid spectrum accessing strategy in cognitive radio communication system. IEEE Communication Letters. doi:10.1109/LCOMM.2016.2622260.

    Google Scholar 

  13. Jian, Y., & Hang-Sheng, Z. (2015). Enhanced throughput of cognitive radio networks by imperfect spectrum prediction. IEEE Communication Letters, 19(10), 1338–1341.

    Google Scholar 

  14. Pei, E., Liang, Y., KC, T., & Li, K. (2011). Energy-efficient design of sequential channel sensing in cognitive radio networks: Optimal sensing strategy, power allocation, and sensing order. IEEE Journal on Selected Areas in Communication, 29(8), 1648–1659.

    Article  Google Scholar 

  15. Chatterjee, S., Maity, S., & Acharya, T. (2014). Energy efficient cognitive radio system for joint spectrum sensing and data transmission. IEEE Journal on Emerging Selected Topics in Circuits Systems, 4(3), 292–300.

    Article  Google Scholar 

  16. Stotas, S. and Nallanathan, A. (2010). Overcoming the sensing-throughput trade-off in cognitive radio networks. Proceedings IEEE international conference on communications (ICC), Cape Town (pp 1–5).

  17. Xing, X., Jing, T., Cheng, W., Huo, Y., & Cheng, X. (2013). Spectrum prediction in cognitve radio networks. IEEE Wireless Communications, 20(2), 90–96.

    Article  Google Scholar 

  18. Cristian, I., & Moh, S. (2015). A low-interference channel states prediction algorithm for instantaneous spectrum access in cognitive radio networks. Wireless Personal Communications, 84(4), 2599–2610.

    Article  Google Scholar 

  19. Barnes, S. D., Maharaj, B. T., & Alfa, A. S. (2016). Cooperative prediction for cognitive radio networks. Wireless Personal Communications, 89(4), 1177–1202.

    Article  Google Scholar 

  20. Sharma, S. K., Bhogle, T. E., Le, L. B., & Wang, X. (2015). Cognitive radio techniques under practical imperfections: A survey. IEEE Cummunications Surveys & Tutorials, 17(4), 1858–1884.

    Article  Google Scholar 

  21. Ban, T. W., Choi, W., Jung, B. C., & Sung, D. K. (2009). Multi-user diversity in a spectrum sharing system. IEEE Transaction on Wireless Communication, 8(1), 102–106.

    Article  Google Scholar 

  22. Chu, T. M. C., Phan, H., & Zepernick, H.-J. (2014). Hybrid interweave-underlay spectrum access for cognitive cooperative radio networks. IEEE Transactions on Communications, 62(7), 2183–2197.

    Article  Google Scholar 

  23. Boyd, S. W., Frye, J. M., Pursley, M. B., & Royster, T. C., IV. (2012). Spectrum monitoring during reception in dynamic spectrum access cognitive radio networks. IEEE Transactions on Communications, 60(2), 547–558.

    Article  Google Scholar 

  24. Ali, A., & Hamouda, W. (2015). Spectrum monitoring using energy ratio algorithm for OFDM-based cognitive radio networks. IEEE Transactions on Wireless Communications, 14(4), 2257–2268.

    Article  Google Scholar 

  25. Orooji, M., Soltanmohammadi, E., & Pour, M. N. (2015). Improving detection delay in cognitive radio using secondary-user receiver statistics. IEEE Transactions on Vehicular Technology, 64(9), 4041–4055.

    Article  Google Scholar 

  26. Liang, Y. C., Zheng, Y., Peh, E. C. Y., & Hoang, A. T. (2008). Sensing throughput trade-off for cognitive radio networks. IEEE Transaction on Wireless Communications, 7(4), 1326–1337.

    Article  Google Scholar 

  27. Masonta, M., Mzyece, M., & Ntlatlapa, N. (2013). Spectrum decision in cognitive radio networks: A survey. IEEE Commununication Survey and Tutorials, 15(3), 1088–1107.

    Article  Google Scholar 

  28. Pandit, S., & Singh, G. (2015). Backoff algorithm in cognitive radio MAC protocol for throughput enhancement. IEEE Transactions on Vehicular Technology, 64(5), 1991–2000.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are sincerely thankful to the potential reviewers for their constructive comments and suggestions to improve the quality of the manuscript. The authors are also highly thankful to Indian Space Research Organization (ISRO) vide project no. ISRO/Res/4/619/14-15 for financial aid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, P., Kumar, A., Pandit, S. et al. Performance analysis of high-traffic cognitive radio communication system using hybrid spectrum access, prediction and monitoring techniques. Wireless Netw 24, 2005–2015 (2018). https://doi.org/10.1007/s11276-016-1440-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-016-1440-7

Keywords

Navigation